Illumination Robust Landing Point Visual Localization for Lunar Lander With High-Resolution Map Generation

被引:1
作者
Tong, Xiaohua [1 ,2 ]
Feng, Yaxuan [1 ,2 ]
Ye, Zhen [1 ,2 ]
Li, Tao [3 ]
Xu, Xiong [1 ,2 ]
Xie, Huan [1 ,2 ]
Yu, Jie [3 ]
Jiao, Yubing [1 ,2 ]
Qian, Jia [1 ,2 ]
Wan, Genyi [1 ,2 ]
Liu, Shijie [1 ,2 ]
Xu, Yusheng [1 ,2 ]
机构
[1] Tongji Univ, Coll Surveying & Geoinformat, Shanghai 200092, Peoples R China
[2] Tongji Univ, Shanghai Key Lab Planetary Mapping & Remote Sensin, Shanghai 200092, Peoples R China
[3] Beijing Inst Control Engn, Beijing 100094, Peoples R China
基金
中国国家自然科学基金;
关键词
Location awareness; Moon; Visualization; Image resolution; Lighting; Image matching; Cameras; Accuracy; Space vehicles; Position measurement; Chang'e-6; high-resolution map; illumination robust matching; landing point localization; DEMS; CONSTRUCTION; IMAGES; SHAPE;
D O I
10.1109/JSTARS.2024.3498351
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Landing point localization is of great significance to the lunar exploration engineering and scientific missions. Vision-based landing point localization methods have successfully been utilized in Chang'e series missions. The issues in landing point visual localization task containing low-resolution reference maps, illumination changes between descent images and maps, and low automation of the localization workflow still need to be solved. In this article, a high-precision and automatic landing point visual localization method with high-resolution map generation is proposed, including initial localization of the first frame, hybrid fine matching, landing point propagation in descent sequence images, and absolute position estimation for landing point. High-resolution digital elevation model and digital orthophoto map (DOM) are generated from Lunar Reconnaissance Orbiter Camera Narrow Angle Camera images and SLDEM2015 data. Phase-based image matching method is adopted for initial localization and matching between descent image and reference map to enhance the illumination robustness. The performance of our method is validated using the descent sequence images from Chang'e series missions. For Chang'e-6 lander, the estimated landing point coordinates are (-153.9870 degrees +/- 0.00002 degrees, -41.6378 degrees +/- 0.00001 degrees, -5256.962 m +/- 0.0041 m). Compared with the manually measured lander coordinates, the deviation of landing point position is less than 1 pixel in DOM.
引用
收藏
页码:1577 / 1591
页数:15
相关论文
共 49 条
[1]   KAZE Features [J].
Alcantarilla, Pablo Fernandez ;
Bartoli, Adrien ;
Davison, Andrew J. .
COMPUTER VISION - ECCV 2012, PT VI, 2012, 7577 :214-227
[2]   Multiview Shape-From-Shading for Planetary Images [J].
Alexandrov, Oleg ;
Beyer, Ross A. .
EARTH AND SPACE SCIENCE, 2018, 5 (10) :652-666
[3]   A new lunar digital elevation model from the Lunar Orbiter Laser Altimeter and SELENE Terrain Camera [J].
Barker, M. K. ;
Mazarico, E. ;
Neumann, G. A. ;
Zuber, M. T. ;
Haruyama, J. ;
Smith, D. E. .
ICARUS, 2016, 273 :346-355
[4]   Speeded-Up Robust Features (SURF) [J].
Bay, Herbert ;
Ess, Andreas ;
Tuytelaars, Tinne ;
Van Gool, Luc .
COMPUTER VISION AND IMAGE UNDERSTANDING, 2008, 110 (03) :346-359
[5]   Large-Scale Block Bundle Adjustment of LROC NAC Images for Lunar South Pole Mapping Based on Topographic Constraint [J].
Chen, Chen ;
Ye, Zhen ;
Xu, Yusheng ;
Liu, Dayong ;
Huang, Rong ;
Zhou, Miyu ;
Xie, Huan ;
Tong, Xiaohua .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 :2731-2746
[6]   CNN-Based Large Area Pixel-Resolution Topography Retrieval From Single-View LROC NAC Images Constrained With SLDEM [J].
Chen, Hao ;
Hu, Xuanyu ;
Glaser, Philipp ;
Xiao, Haifeng ;
Ye, Zhen ;
Zhang, Hanyue ;
Tong, Xiaohua ;
Oberst, Juergen .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 :9398-9416
[7]  
China National Space Administration, 2024, China's Chang'e-6 Lands on Moon's Far Side to Collect Samples
[8]   Visual-inertial navigation for pinpoint planetary landing using scale-based landmark matching [J].
Delaune, J. ;
Le Besnerais, G. ;
Voirin, T. ;
Farges, J. L. ;
Bourdarias, C. .
ROBOTICS AND AUTONOMOUS SYSTEMS, 2016, 78 :63-82
[9]  
Di Kaichang, 2019, [遥感学报, Journal of Remote Sensing], V23, P177
[10]   Fast Edge Detection Using Structured Forests [J].
Dollar, Piotr ;
Zitnick, C. Lawrence .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2015, 37 (08) :1558-1570