Informative Scene Graph Generation via Debiasing

被引:0
作者
Gao, Lianli [1 ]
Lyu, Xinyu [2 ]
Guo, Yuyu [1 ]
Hu, Yuxuan [3 ]
Li, Yuan-Fang [4 ]
Xu, Lu [5 ]
Shen, Heng Tao [6 ]
Song, Jingkuan [6 ]
机构
[1] Univ Elect Sci & Technol China, Shenzhen Inst Adv Study, Shenzhen, Peoples R China
[2] Southwestern Univ Finance & Econ, Chengdu, Peoples R China
[3] Southwest Univ, Chongqing, Peoples R China
[4] Monash Univ, Melbourne, Vic, Australia
[5] Kuaishou, Beijing, Peoples R China
[6] Tongji Univ, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
Scene graph generation; Visual relationship; Debaising; Information content; SEMANTIC SIMILARITY; ATTENTION;
D O I
10.1007/s11263-025-02365-y
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Scene graph generation aims to detect visual relationship triplets, (subject, predicate, object). Due to biases in data, current models tend to predict common predicates, e.g., "on" and "at", instead of informative ones, e.g., "standing on" and "looking at". This tendency results in the loss of precise information and overall performance. If a model only uses "stone on road" rather than "stone blocking road" to describe an image, it may be a grave misunderstanding. We argue that this phenomenon is caused by two imbalances: semantic space level imbalance and training sample level imbalance. For this problem, we propose DB-SGG, an effective framework based on debiasing but not the conventional distribution fitting. It integrates two components: Semantic Debiasing (SD) and Balanced Predicate Learning (BPL), for these imbalances. SD utilizes a confusion matrix and a bipartite graph to construct predicate relationships. BPL adopts a random undersampling strategy and an ambiguity removing strategy to focus on informative predicates. Benefiting from the model-agnostic process, our method can be easily applied to SGG models and outperforms Transformer by 136.3%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$136.3\%$$\end{document}, 119.5%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$119.5\%$$\end{document}, and 122.6%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$122.6\%$$\end{document} on mR@20 at three SGG sub-tasks on the SGG-VG dataset. Our method is further verified on another complex SGG dataset (SGG-GQA) and two downstream tasks (sentence-to-graph retrieval and image captioning).
引用
收藏
页码:4196 / 4219
页数:24
相关论文
共 96 条
[61]   Semantic similarity in a taxonomy: An information-based measure and its application to problems of ambiguity in natural language [J].
Resnik, P .
JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 1999, 11 :95-130
[62]   Understanding inverse document frequency: on theoretical arguments for IDF [J].
Robertson, S .
JOURNAL OF DOCUMENTATION, 2004, 60 (05) :503-520
[63]  
Ross S.M., 1976, A First Course in Probability
[64]   TERM-WEIGHTING APPROACHES IN AUTOMATIC TEXT RETRIEVAL [J].
SALTON, G ;
BUCKLEY, C .
INFORMATION PROCESSING & MANAGEMENT, 1988, 24 (05) :513-523
[65]  
Schuster Sebastian, 2015, P 4 WORKSH VIS LANG, P70, DOI DOI 10.18653/V1
[66]  
Seco N, 2004, FRONT ARTIF INTEL AP, V110, P1089
[67]   A Fast Optimization Method for General Binary Code Learning [J].
Shen, Fumin ;
Zhou, Xiang ;
Yang, Yang ;
Song, Jingkuan ;
Shen, Heng Tao ;
Tao, Dacheng .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2016, 25 (12) :5610-5621
[68]   Self-Supervised Video Hashing With Hierarchical Binary Auto-Encoder [J].
Song, Jingkuan ;
Zhang, Hanwang ;
Li, Xiangpeng ;
Gao, Lianli ;
Wang, Meng ;
Hong, Richang .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (07) :3210-3221
[69]   Energy-Based Learning for Scene Graph Generation [J].
Suhail, Mohammed ;
Mittal, Abhay ;
Siddiquie, Behjat ;
Broaddus, Chris ;
Eledath, Jayan ;
Medioni, Gerard ;
Sigal, Leonid .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :13931-13940
[70]   Equalization Loss for Long-Tailed Object Recognition [J].
Tan, Jingru ;
Wang, Changbao ;
Li, Buyu ;
Li, Quanquan ;
Ouyang, Wanli ;
Yin, Changqing ;
Yan, Junjie .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020), 2020, :11659-11668