Informative Scene Graph Generation via Debiasing

被引:0
作者
Gao, Lianli [1 ]
Lyu, Xinyu [2 ]
Guo, Yuyu [1 ]
Hu, Yuxuan [3 ]
Li, Yuan-Fang [4 ]
Xu, Lu [5 ]
Shen, Heng Tao [6 ]
Song, Jingkuan [6 ]
机构
[1] Univ Elect Sci & Technol China, Shenzhen Inst Adv Study, Shenzhen, Peoples R China
[2] Southwestern Univ Finance & Econ, Chengdu, Peoples R China
[3] Southwest Univ, Chongqing, Peoples R China
[4] Monash Univ, Melbourne, Vic, Australia
[5] Kuaishou, Beijing, Peoples R China
[6] Tongji Univ, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
Scene graph generation; Visual relationship; Debaising; Information content; SEMANTIC SIMILARITY; ATTENTION;
D O I
10.1007/s11263-025-02365-y
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Scene graph generation aims to detect visual relationship triplets, (subject, predicate, object). Due to biases in data, current models tend to predict common predicates, e.g., "on" and "at", instead of informative ones, e.g., "standing on" and "looking at". This tendency results in the loss of precise information and overall performance. If a model only uses "stone on road" rather than "stone blocking road" to describe an image, it may be a grave misunderstanding. We argue that this phenomenon is caused by two imbalances: semantic space level imbalance and training sample level imbalance. For this problem, we propose DB-SGG, an effective framework based on debiasing but not the conventional distribution fitting. It integrates two components: Semantic Debiasing (SD) and Balanced Predicate Learning (BPL), for these imbalances. SD utilizes a confusion matrix and a bipartite graph to construct predicate relationships. BPL adopts a random undersampling strategy and an ambiguity removing strategy to focus on informative predicates. Benefiting from the model-agnostic process, our method can be easily applied to SGG models and outperforms Transformer by 136.3%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$136.3\%$$\end{document}, 119.5%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$119.5\%$$\end{document}, and 122.6%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$122.6\%$$\end{document} on mR@20 at three SGG sub-tasks on the SGG-VG dataset. Our method is further verified on another complex SGG dataset (SGG-GQA) and two downstream tasks (sentence-to-graph retrieval and image captioning).
引用
收藏
页码:4196 / 4219
页数:24
相关论文
共 96 条
[1]   Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering [J].
Anderson, Peter ;
He, Xiaodong ;
Buehler, Chris ;
Teney, Damien ;
Johnson, Mark ;
Gould, Stephen ;
Zhang, Lei .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :6077-6086
[2]   SPICE: Semantic Propositional Image Caption Evaluation [J].
Anderson, Peter ;
Fernando, Basura ;
Johnson, Mark ;
Gould, Stephen .
COMPUTER VISION - ECCV 2016, PT V, 2016, 9909 :382-398
[3]  
[Anonymous], 2010, Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics
[4]   Probabilistic Debiasing of Scene Graphs [J].
Biswas, Bashirul Azam ;
Ji, Qiang .
2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, :10429-10438
[5]  
Breese J.S., 2013, CORR
[6]   Counterfactual Critic Multi-Agent Training for Scene Graph Generation [J].
Chen, Long ;
Zhang, Hanwang ;
Xiao, Jun ;
He, Xiangnan ;
Pu, Shiliang ;
Chang, Shih-Fu .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :4612-4622
[7]   Knowledge-Embedded Routing Network for Scene Graph Generation [J].
Chen, Tianshui ;
Yu, Weihao ;
Chen, Riquan ;
Lin, Liang .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :6156-6164
[8]   Destruction and Construction Learning for Fine-grained Image Recognition [J].
Chen, Yue ;
Bai, Yalong ;
Zhang, Wei ;
Mei, Tao .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :5152-5161
[9]  
Cohn-Gordon R., 2018, P 2018 C N AM CHAPT, V2, P439, DOI DOI 10.18653/V1/N18-2070
[10]   RelTR: Relation Transformer for Scene Graph Generation [J].
Cong, Yuren ;
Yang, Michael Ying ;
Rosenhahn, Bodo .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (09) :11169-11183