An Improved Underwater Object Detection Algorithm Based on YOLOv5 for Blurry Images

被引:0
|
作者
Cheng, Liyan [1 ]
Zhou, Hui [1 ]
Le, Xingni [1 ]
Chen, Wanru [1 ]
Tao, Hechuan [1 ]
Ding, Jiarui [1 ]
Wang, Xinru [1 ]
Wang, Ruizhi [2 ]
Yang, Qunhui [1 ]
Chen, Chen [3 ]
Kong, Meiwei [1 ]
机构
[1] Tongji Univ, State Key Lab Marine Geol, Shanghai, Peoples R China
[2] Tongji Univ, Dept Comp Sci & Technol, Shanghai, Peoples R China
[3] Chongqing Univ, Sch Microelect & Commun Engn, Chongqing, Peoples R China
来源
2024 12TH INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND WIRELESS OPTICAL COMMUNICATIONS, ICWOC | 2024年
关键词
underwater object detection; MobileOne; YOLOv5; attention modules; normalized gaussian wassernstein distance loss function;
D O I
10.1109/ICWOC62055.2024.10684955
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
High-precision underwater object detection technology has important research value and broad application prospects in marine biological resources exploration and marine fisheries monitoring. However, blurry images pose great challenges to the detection of underwater objects of different sizes. The detection accuracy of underwater objects of different sizes in blurry images needs to be improved significantly. To this end, we propose a convolutional neural network based on YOLOv5 named YOLOv5-MobileOne-Attention (YOLOv5-MA) in this work. In YOLOv5-MA, we replace the backbone of YOLOv5 with MobileOne to improve the accuracy of the algorithm, and add the convolutional block attention module and the normalization-based attention module to enhance the feature extraction capability for underwater blurry images. Furthermore, we add the normalized gaussian wassernstein distance loss function based on the location loss function to reduce the sensitivity of the anchor frame of small objects to the intersection over union values. In the experiment, we investigate the performance of YOLOv5-MA using a dataset containing blurry images selected from the underwater robot professional contest 2020 dataset and the real-world underwater image enhancement dataset. Experimental results show that the mAP_0.5 value of YOLOv5-MA reaches 54.4%, which is 2.8% higher than that of YOLOv5s. Moreover, YOLOv5-MA can achieve a balance between accuracy and speed compared to YOLOv5, YOLOv8, and RE-DETR. This validates the advantages of YOLOv5-MA in underwater object detection for blurry images. It has great application prospect in future object detection based on underwater robots in complex underwater environments.
引用
收藏
页码:42 / 47
页数:6
相关论文
共 50 条
  • [41] A systematic review and analysis of deep learning-based underwater object detection
    Xu, Shubo
    Zhang, Minghua
    Song, Wei
    Mei, Haibin
    He, Qi
    Liotta, Antonio
    NEUROCOMPUTING, 2023, 527 : 204 - 232
  • [42] Hovering control of UUV through underwater object detection based on deep learning
    Jin, Han-Sol
    Cho, Hyunjoon
    Jiafeng, Huang
    Lee, Ji-Hyeong
    Kim, Myung-Jun
    Jeong, Sang-Ki
    Ji, Dae-Hyeong
    Joo, Kibum
    Jung, Dongwook
    Choi, Hyeung-Sik
    OCEAN ENGINEERING, 2022, 253
  • [43] HTDet: A Hybrid Transformer-Based Approach for Underwater Small Object Detection
    Chen, Gangqi
    Mao, Zhaoyong
    Wang, Kai
    Shen, Junge
    REMOTE SENSING, 2023, 15 (04)
  • [44] Lightweight underwater object detection based on image enhancement and multi-attention
    Tian, Tian
    Cheng, Jixiang
    Wu, Dan
    Li, Zhidan
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (23) : 63075 - 63093
  • [45] Multiple information perception-based attention in YOLO for underwater object detection
    Shen, Xin
    Wang, Huibing
    Cui, Tianxiang
    Guo, Zhicheng
    Fu, Xianping
    VISUAL COMPUTER, 2024, 40 (03) : 1415 - 1438
  • [46] Real-Time Underwater Object Detection Based on DC Resistivity Method
    Cho, Sung-Ho
    Jung, Hyun-Key
    Lee, Hyosun
    Rim, Hyoungrea
    Lee, Seong Kon
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (11): : 6833 - 6842
  • [47] Multiple information perception-based attention in YOLO for underwater object detection
    Xin Shen
    Huibing Wang
    Tianxiang Cui
    Zhicheng Guo
    Xianping Fu
    The Visual Computer, 2024, 40 : 1415 - 1438
  • [48] Underwater salient object detection jointly using improved spectral residual and Fuzzy c-Means
    Feng, Hui
    Yin, Xinghui
    Xu, Lizhong
    Lv, Guofang
    Li, Qi
    Wang, Lulu
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2019, 37 (01) : 329 - 339
  • [49] Underwater target detection algorithm based on feature enhancement and feature fusion
    Liu, Qinxiao
    Ji, Longlong
    Zhao, Fen
    ENGINEERING RESEARCH EXPRESS, 2025, 7 (01):
  • [50] Acoustic beam profile-based rapid underwater object detection for an imaging sonar
    Cho, Hyeonwoo
    Gu, Jeonghwe
    Joe, Hangil
    Asada, Akira
    Yu, Son-Cheol
    JOURNAL OF MARINE SCIENCE AND TECHNOLOGY, 2015, 20 (01) : 180 - 197