An Improved Underwater Object Detection Algorithm Based on YOLOv5 for Blurry Images

被引:0
|
作者
Cheng, Liyan [1 ]
Zhou, Hui [1 ]
Le, Xingni [1 ]
Chen, Wanru [1 ]
Tao, Hechuan [1 ]
Ding, Jiarui [1 ]
Wang, Xinru [1 ]
Wang, Ruizhi [2 ]
Yang, Qunhui [1 ]
Chen, Chen [3 ]
Kong, Meiwei [1 ]
机构
[1] Tongji Univ, State Key Lab Marine Geol, Shanghai, Peoples R China
[2] Tongji Univ, Dept Comp Sci & Technol, Shanghai, Peoples R China
[3] Chongqing Univ, Sch Microelect & Commun Engn, Chongqing, Peoples R China
来源
2024 12TH INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND WIRELESS OPTICAL COMMUNICATIONS, ICWOC | 2024年
关键词
underwater object detection; MobileOne; YOLOv5; attention modules; normalized gaussian wassernstein distance loss function;
D O I
10.1109/ICWOC62055.2024.10684955
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
High-precision underwater object detection technology has important research value and broad application prospects in marine biological resources exploration and marine fisheries monitoring. However, blurry images pose great challenges to the detection of underwater objects of different sizes. The detection accuracy of underwater objects of different sizes in blurry images needs to be improved significantly. To this end, we propose a convolutional neural network based on YOLOv5 named YOLOv5-MobileOne-Attention (YOLOv5-MA) in this work. In YOLOv5-MA, we replace the backbone of YOLOv5 with MobileOne to improve the accuracy of the algorithm, and add the convolutional block attention module and the normalization-based attention module to enhance the feature extraction capability for underwater blurry images. Furthermore, we add the normalized gaussian wassernstein distance loss function based on the location loss function to reduce the sensitivity of the anchor frame of small objects to the intersection over union values. In the experiment, we investigate the performance of YOLOv5-MA using a dataset containing blurry images selected from the underwater robot professional contest 2020 dataset and the real-world underwater image enhancement dataset. Experimental results show that the mAP_0.5 value of YOLOv5-MA reaches 54.4%, which is 2.8% higher than that of YOLOv5s. Moreover, YOLOv5-MA can achieve a balance between accuracy and speed compared to YOLOv5, YOLOv8, and RE-DETR. This validates the advantages of YOLOv5-MA in underwater object detection for blurry images. It has great application prospect in future object detection based on underwater robots in complex underwater environments.
引用
收藏
页码:42 / 47
页数:6
相关论文
共 50 条
  • [11] AquaYOLO: Enhancing YOLOv8 for Accurate Underwater Object Detection for Sonar Images
    Lu, Yanyang
    Zhang, Jingjing
    Chen, Qinglang
    Xu, Chengjun
    Irfan, Muhammad
    Chen, Zhe
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2025, 13 (01)
  • [12] An Improved YOLO Algorithm for Fast and Accurate Underwater Object Detection
    Zhao, Shijia
    Zheng, Jiachun
    Sun, Shidan
    Zhang, Lei
    SYMMETRY-BASEL, 2022, 14 (08):
  • [13] Optimization and Application of Improved YOLOv9s-UI for Underwater Object Detection
    Pan, Wei
    Chen, Jiabao
    Lv, Bangjun
    Peng, Likun
    APPLIED SCIENCES-BASEL, 2024, 14 (16):
  • [14] An improved YOLOv8 model enhanced with detail and global features for underwater object detection
    Zhai, Zheng-Li
    Niu, Niu-Wang-Jie
    Feng, Bao-Ming
    Xu, Shi-Ya
    Qu, Chun-Yu
    Zong, Chao
    PHYSICA SCRIPTA, 2024, 99 (09)
  • [15] YOLOv8-UW: innovative real-time algorithm for underwater object detection
    Lin Yang
    Taeyun Noh
    Signal, Image and Video Processing, 2025, 19 (7)
  • [16] Underwater Object Detection Method Based on Improved Faster RCNN
    Wang, Hao
    Xiao, Nanfeng
    APPLIED SCIENCES-BASEL, 2023, 13 (04):
  • [17] An Underwater Object Detection Method for Sonar Image Based on YOLOv3 Model
    Wang Fei
    Wang Xinyu
    Zhou Jingchun
    Liu Miao
    JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2022, 44 (10) : 3419 - 3426
  • [18] Underwater Target Detection Based on Improved YOLOv7 Algorithm With BiFusion Neck Structure and MPDIoU Loss Function
    Ou, Jinyu
    Shen, Yijun
    IEEE ACCESS, 2024, 12 : 105165 - 105177
  • [19] YOLOv7-CHS: An Emerging Model for Underwater Object Detection
    Zhao, Liang
    Yun, Qing
    Yuan, Fucai
    Ren, Xu
    Jin, Junwei
    Zhu, Xianchao
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2023, 11 (10)
  • [20] Underwater object detection by integrating YOLOv8 and efficient transformer
    Liu, Jing
    Sun, Kaiqiong
    Ye, Xiao
    Yun, Yaokun
    JOURNAL OF ELECTRONIC IMAGING, 2024, 33 (04)