An Improved Underwater Object Detection Algorithm Based on YOLOv5 for Blurry Images

被引:0
|
作者
Cheng, Liyan [1 ]
Zhou, Hui [1 ]
Le, Xingni [1 ]
Chen, Wanru [1 ]
Tao, Hechuan [1 ]
Ding, Jiarui [1 ]
Wang, Xinru [1 ]
Wang, Ruizhi [2 ]
Yang, Qunhui [1 ]
Chen, Chen [3 ]
Kong, Meiwei [1 ]
机构
[1] Tongji Univ, State Key Lab Marine Geol, Shanghai, Peoples R China
[2] Tongji Univ, Dept Comp Sci & Technol, Shanghai, Peoples R China
[3] Chongqing Univ, Sch Microelect & Commun Engn, Chongqing, Peoples R China
来源
2024 12TH INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND WIRELESS OPTICAL COMMUNICATIONS, ICWOC | 2024年
关键词
underwater object detection; MobileOne; YOLOv5; attention modules; normalized gaussian wassernstein distance loss function;
D O I
10.1109/ICWOC62055.2024.10684955
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
High-precision underwater object detection technology has important research value and broad application prospects in marine biological resources exploration and marine fisheries monitoring. However, blurry images pose great challenges to the detection of underwater objects of different sizes. The detection accuracy of underwater objects of different sizes in blurry images needs to be improved significantly. To this end, we propose a convolutional neural network based on YOLOv5 named YOLOv5-MobileOne-Attention (YOLOv5-MA) in this work. In YOLOv5-MA, we replace the backbone of YOLOv5 with MobileOne to improve the accuracy of the algorithm, and add the convolutional block attention module and the normalization-based attention module to enhance the feature extraction capability for underwater blurry images. Furthermore, we add the normalized gaussian wassernstein distance loss function based on the location loss function to reduce the sensitivity of the anchor frame of small objects to the intersection over union values. In the experiment, we investigate the performance of YOLOv5-MA using a dataset containing blurry images selected from the underwater robot professional contest 2020 dataset and the real-world underwater image enhancement dataset. Experimental results show that the mAP_0.5 value of YOLOv5-MA reaches 54.4%, which is 2.8% higher than that of YOLOv5s. Moreover, YOLOv5-MA can achieve a balance between accuracy and speed compared to YOLOv5, YOLOv8, and RE-DETR. This validates the advantages of YOLOv5-MA in underwater object detection for blurry images. It has great application prospect in future object detection based on underwater robots in complex underwater environments.
引用
收藏
页码:42 / 47
页数:6
相关论文
共 50 条
  • [1] YOLOv8-UC: An Improved YOLOv8-Based Underwater Object Detection Algorithm
    Huang, Jinghua
    Fang, Chao
    Zheng, Xiaogang
    Liu, Jue
    IEEE ACCESS, 2024, 12 : 172186 - 172195
  • [2] Research on Underwater Object Detection Algorithm Based on YOLOv7
    Shi, Biying
    Zhang, Lianbo
    Tang, Jialin
    Yan Jinghui
    2024 CROSS STRAIT RADIO SCIENCE AND WIRELESS TECHNOLOGY CONFERENCE, CSRSWTC 2024, 2024, : 501 - 506
  • [3] Rcf-yolo: an underwater object detection algorithm based on improved YOLOv10n
    Xiuman Liang
    Teng Zhang
    Haifeng Yu
    Zhendong Liu
    Journal of Real-Time Image Processing, 2025, 22 (2)
  • [4] Semi-Supervised Method for Underwater Object Detection Algorithm Based on Improved YOLOv8
    Xu, Siyi
    Wang, Jian
    Sang, Qingbing
    APPLIED SCIENCES-BASEL, 2025, 15 (03):
  • [5] Underwater Object Detection Algorithm Based on Improved CenterNet
    Wang Rongrong
    Jiang Zhongyun
    LASER & OPTOELECTRONICS PROGRESS, 2023, 60 (02)
  • [6] Lightweight marine biological target detection algorithm based on YOLOv5
    Liang, Heng
    Song, Tingqiang
    FRONTIERS IN MARINE SCIENCE, 2023, 10
  • [7] Detection of Moving Object with Dynamic Mode Decomposition and Yolov5
    Chen Zijian
    Lu Jihua
    Liu Xu
    Yan Lei
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 6754 - 6758
  • [8] An Underwater Dense Small Object Detection Model Based on YOLOv5-CFDSDSE
    Wang, Jingyang
    Li, Yujia
    Wang, Junkai
    Li, Ying
    ELECTRONICS, 2023, 12 (15)
  • [9] An Underwater Target Detection Algorithm Based on Attention Mechanism and Improved YOLOv7
    Ren, Liqiu
    Li, Zhanying
    He, Xueyu
    Kong, Lingyan
    Zhang, Yinghao
    CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 78 (02): : 2829 - 2845
  • [10] Improved YOLOv7 model for underwater sonar image object detection
    Qin, Ken Sinkou
    Liu, Di
    Wang, Fei
    Zhou, Jingchun
    Yang, Jiaxuan
    Zhang, Weishi
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2024, 100