Monte Carlo Source Enumeration for Sparse Arrays

被引:0
|
作者
Liu, Chun-Lin [1 ,2 ]
机构
[1] Natl Taiwan Univ, Dept Elect Engn, Taipei 10617, Taiwan
[2] Natl Taiwan Univ, Grad Inst Commun Engn, Taipei 10617, Taiwan
关键词
Source enumeration; sparse arrays; Monte Carlo methods; Cramer-Rao bounds; log-likelihood functions; DEFINITE TOEPLITZ COMPLETION; LINEAR ANTENNA-ARRAYS; DOA ESTIMATION; NESTED ARRAYS;
D O I
10.1109/SAM60225.2024.10636447
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Linear sparse arrays with N physical sensors can resolve O(N-2) directions of arrival (DOAs) for uncorrelated sources. This attribute is associated with the difference coarray of size O(N-2). However, the number of sources is assumed to be known in many coarray-based DOA estimators. This paper proposes a Monte Carlo source enumerator (MCSE) for sparse arrays by maximizing the log-likelihood function (LLF). This LLF depends on an unbounded parameter space and a multiple integral, which are challenging for computation. This unbounded parameter space is replaced with a bounded space derived from coarse estimates and Cramer-Rao bounds. Next, the multiple integral is approximated with Monte Carlo methods. The MCSE applies to three scenarios: no sources, fewer sources than sensors, and more sources than sensors. Furthermore, some details in the MCSE can be computed in parallel. Numerical examples demonstrate the applicability of the MCSE to sparse arrays.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Source distribution in adjoint Monte Carlo calculation
    Chuang, KS
    Tzeng, HL
    PHYSICS IN MEDICINE AND BIOLOGY, 2000, 45 (02): : L5 - L7
  • [22] Monte Carlo evaluations and the source normalisation problem
    Neuhold, P
    RADIATION PROTECTION DOSIMETRY, 2005, 115 (1-4) : 268 - 270
  • [23] MONTE-CARLO SOURCE BIASING OPTIMIZATION
    HOFFMAN, TJ
    NUCLEAR SCIENCE AND ENGINEERING, 1979, 69 (01) : 76 - 77
  • [24] MONTE-CARLO SOURCE BIASING OPTIMIZATION
    HOFFMAN, TJ
    TRANSACTIONS OF THE AMERICAN NUCLEAR SOCIETY, 1973, 16 (JUN): : 139 - 139
  • [25] Source measurement for electron Monte Carlo calculations
    Antolak, J.
    Weinberg, R.
    MEDICAL PHYSICS, 2006, 33 (06) : 2136 - 2136
  • [26] A sparse algorithm for the evaluation of the local energy in quantum Monte Carlo
    Aspuru-Guzik, A
    Salomón-Ferrer, R
    Austin, B
    Lester, WA
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2005, 26 (07) : 708 - 715
  • [27] A Monte Carlo Approach to Sparse Approximate Inverse Matrix Computations
    Strassburg, J.
    Alexandrov, N.
    2013 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, 2013, 18 : 2307 - 2316
  • [28] Sparse regression learning by aggregation and Langevin Monte-Carlo
    Dalalyan, A. S.
    Tsybakov, A. B.
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2012, 78 (05) : 1423 - 1443
  • [29] Monte Carlo estimates of the log determinant of large sparse matrices
    Barry, RP
    Pace, RK
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1999, 289 (1-3) : 41 - 54
  • [30] A sparse parallel hybrid Monte Carlo algorithm for matrix computations
    Branford, S
    Weihrauch, C
    Alexandrov, V
    COMPUTATIONAL SCIENCE - ICCS 2005, PT 3, 2005, 3516 : 743 - 751