The evolution of selection bias in the recent epidemiologic literature-a selective overview

被引:5
作者
Lu, Haidong [1 ,2 ,3 ]
Howe, Chanelle J. [4 ]
Zivich, Paul N. [5 ]
Gonsalves, Gregg S. [2 ,3 ,6 ]
Westreich, Daniel [5 ]
机构
[1] Yale Sch Med, Dept Internal Med, Sect Gen Internal Med, 367 Cedar St, New Haven, CT 06510 USA
[2] Yale Sch Med, Program Addict Med, New Haven, CT 06510 USA
[3] Yale Sch Publ Hlth, Publ Hlth Modeling Unit, New Haven, CT 06511 USA
[4] Brown Univ, Ctr Epidemiol Res, Sch Publ Hlth, Dept Epidemiol, Providence, RI 02903 USA
[5] Univ North Carolina, Gillings Sch Global Publ Hlth, Dept Epidemiol, Chapel Hill, NC 27599 USA
[6] Yale Sch Publ Hlth, Dept Epidemiol Microbial Dis, New Haven, CT 06510 USA
基金
美国国家卫生研究院;
关键词
selection bias; collider bias; causal directed acyclic graph; single-world intervention graph; causal inference; epidemiologic research; CAUSAL DIAGRAMS; FOLLOW-UP; KNOWLEDGE; BIRTH;
D O I
10.1093/aje/kwae282
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Selection bias has long been central in methodological discussions across epidemiology and other fields. In epidemiology, the concept of selection bias has been continually evolving over time. In this issue of American Journal of Epidemiology, Mathur and Shpitser (Am J Epidemiol. 2025;194(1):267-277) present simple graphical rules for assessing the presence of selection bias when estimating causal effects by using a single-world intervention graph (SWIG). Their work is particularly insightful as it addresses the scenarios where treatment affects sample selection-a topic that has been underexplored in previous literature on selection bias. To contextualize the work by Mathur and Shpitser, we trace the evolution of the concept of selection bias in epidemiology, focusing primarily on the developments in the last 20-30 years following the adoption of causal directed acyclic graphs (DAGs) in epidemiologic research.
引用
收藏
页码:580 / 584
页数:5
相关论文
共 48 条
[1]  
[Anonymous], 2008, Cochrane handbook for systematic reviews of interventions, DOI DOI 10.1002/9780470712184
[2]   Electoral goals and center-state transfers: A theoretical model and empirical evidence from India [J].
Arulampalam, Wiji ;
Dasgupta, Sugato ;
Dhillon, Amrita ;
Dutta, Bhaskar .
JOURNAL OF DEVELOPMENT ECONOMICS, 2009, 88 (01) :103-119
[3]   Survivor treatment bias, treatment selection bias, and propensity scores in observational research [J].
Austin, Peter C. ;
Platt, Robert W. .
JOURNAL OF CLINICAL EPIDEMIOLOGY, 2010, 63 (02) :136-138
[4]   The obesity paradox: Understanding the effect of obesity on mortality among individuals with cardiovascular disease [J].
Banack, Hailey R. ;
Kaufman, Jay S. .
PREVENTIVE MEDICINE, 2014, 62 :96-102
[5]  
Bareinboim E, 2014, AAAI CONF ARTIF INTE, P2410
[6]   AN INTRODUCTION TO SAMPLE SELECTION BIAS IN SOCIOLOGICAL DATA [J].
BERK, RA .
AMERICAN SOCIOLOGICAL REVIEW, 1983, 48 (03) :386-398
[7]   Bias from self selection and loss to follow-up in prospective cohort studies [J].
Biele, Guido ;
Gustavson, Kristin ;
Czajkowski, Nikolai Olavi ;
Nilsen, Roy Miodini ;
Reichborn-Kjennerud, Ted ;
Magnus, Per Minor ;
Stoltenberg, Camilla ;
Aase, Heidi .
EUROPEAN JOURNAL OF EPIDEMIOLOGY, 2019, 34 (10) :927-938
[8]   A Practical Example Demonstrating the Utility of Single-world Intervention Graphs [J].
Breskin, Alexander ;
Cole, Stephen R. ;
Hudgens, Michael G. .
EPIDEMIOLOGY, 2018, 29 (03) :E20-E21
[9]   ANALYSIS OF COVARIANCE - ITS NATURE AND USES [J].
COCHRAN, WG .
BIOMETRICS, 1957, 13 (03) :261-281
[10]   Illustrating bias due to conditioning on a collider [J].
Cole, Stephen R. ;
Platt, Robert W. ;
Schisterman, Enrique F. ;
Chu, Haitao ;
Westreich, Daniel ;
Richardson, David ;
Poole, Charles .
INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2010, 39 (02) :417-420