(θi, λ)-constacyclic codes and DNA codes over Z4

被引:0
|
作者
Uzekmek, Fatma Zehra [1 ]
Oztas, Elif Segah [2 ]
Ozen, Mehmet [3 ]
机构
[1] Istanbul Gedik Univ, Fac Engn, Dept Comp Engn, TR-34876 Istanbul, Turkiye
[2] Karamanoglu Mehmetbey Univ, Kamil Ozdag Fac Sci, Dept Math, Ibrahim Oktem St, TR-70100 Karaman, Turkiye
[3] Sakarya Univ, Fac Sci, Dept Math, TR-54050 Sakarya, Turkiye
来源
AIMS MATHEMATICS | 2024年 / 9卷 / 10期
关键词
codes over rings; constacyclic codes; skew codes; DNA codes; CONSTACYCLIC CODES; CYCLIC CODES;
D O I
10.3934/math.20241355
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, three new automorphisms were identified over the ring Z(4)+uZ(4)+u(2)Z(4) where u(3 )= u(2). With the help of these automorphisms, the characteristic structures of the generator polynomials for the theta i-cyclic codes and (theta(i),lambda)-constacyclic codes of odd length on this ring were investigated. Also, for all the units over the ring, Z(4)-images of theta i-cyclic and (theta(i),lambda)-constacyclic codes were reviewed with the associated codes based on determined transformations. Using these observations, new and optimal codes were obtained and presented in the table. In addition, a new transformation was identified that involved DNA base pairs with the elements of Z(4). Moreover, a unit reverse polynomial was created, and in this way a new generation method has been built to construct reversible DNA codes over this ring. Finally, this article was further enhanced with supporting examples of the DNA as a part of the study.
引用
收藏
页码:27908 / 27929
页数:22
相关论文
共 50 条
  • [41] A COMPLETE STRUCTURE OF SKEW CYCLIC CODES OVER Z4 + uZ4
    Shah, Saumya
    Sharma, Amit
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2025, 19 (01) : 259 - 275
  • [42] Quantum Codes from Constacyclic Codes over Polynomial Residue Rings
    Ding, Jian
    Li, Hongju
    Liang, Jing
    Tang, Yongsheng
    CHINESE JOURNAL OF ELECTRONICS, 2019, 28 (06) : 1131 - 1138
  • [43] ON THE DUAL CODES OF SKEW CONSTACYCLIC CODES
    Almendras Valdebenito, Alexis Eduardo
    Luigi Tironi, Andrea
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2018, 12 (04) : 659 - 679
  • [44] QUANTUM CODES FROM CONSTACYCLIC CODES OVER A SEMI-LOCAL RING
    Ashraf, M. O. H. A. M. M. A. D.
    Khan, N. A. I. M.
    Mohammad, G. H. U. L. A. M.
    REPORTS ON MATHEMATICAL PHYSICS, 2022, 90 (02) : 271 - 284
  • [45] Cyclic codes of length 2e over Z4
    Abualrub, T
    Oehmke, R
    DISCRETE APPLIED MATHEMATICS, 2003, 128 (01) : 3 - 9
  • [46] A CLASS OF SKEW-CYCLIC CODES OVER Z4 + uZ4 WITH DERIVATION
    Sharma, Amit
    Bhaintwal, Maheshanand
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2018, 12 (04) : 723 - 739
  • [47] Quantum codes from a class of constacyclic codes over finite commutative rings
    Hai Q Dinh
    Bag, Tushar
    Upadhyay, Ashish K.
    Ashraf, Mohammad
    Mohammad, Ghulam
    Chinnakum, Warattaya
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2020, 19 (12)
  • [48] (σ, δ)-Skew quasi-cyclic codes over the ring Z4 + uZ4
    Ma, Fanghui
    Gao, Jian
    Li, Juan
    Fu, Fang-Wei
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2021, 13 (02): : 307 - 320
  • [49] Constacyclic codes over mixed alphabets and their applications in constructing new quantum codes
    Dinh, Hai Q.
    Pathak, Sachin
    Bag, Tushar
    Upadhyay, Ashish Kumar
    Yamaka, Woraphon
    QUANTUM INFORMATION PROCESSING, 2021, 20 (04)
  • [50] A class of skew constacyclic codes over ℤ4
    El Hamdaoui, Mohammadi
    Ou-Azzou, Hassan
    Boua, Abdelkarim
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2025,