Beamforming with Free Energy Principle under Hierarchical Codebook

被引:0
|
作者
Otoshi, Tatsuya [1 ]
Murata, Masayuki [2 ]
机构
[1] Osaka Univ, Grad Sch Econ, Osaka, Japan
[2] Osaka Univ, Grad Sch Informat Sci & Technol, Osaka, Japan
来源
2024 INTERNATIONAL CONFERENCE ON COMPUTING, NETWORKING AND COMMUNICATIONS, ICNC | 2024年
关键词
Beamforming; Beyond; 5G; Active Inference; Free Energy Principle; Hierarchical Codebook; MASSIVE MIMO; DESIGN;
D O I
10.1109/CNC59896.2024.10555936
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Beamforming plays a crucial role in enhancing the performance of wireless communication systems. However, achieving optimal beamforming entails a trade-off between exploration and exploitation, where the system needs to balance the exploration of different beam directions with the exploitation of the best available beam. Motivated by the exploration-exploitation trade-off, we propose the FEP method, which leverages hierarchical modeling and adaptive beam switching to optimize this trade-off. Through simulations in a dynamic environment, we evaluate the performance of the FEP method in terms of expected free energy minimization and signal-to-interference-plus-noise ratio (SINR) maximization. The results demonstrate that the FEP method effectively maintains high SINR levels through adaptive beam direction selection, reflecting efficient exploitation. Comparative analysis with other beamforming methods further highlights the superior performance of the FEP method in terms of average signal quality and stability.
引用
收藏
页码:511 / 517
页数:7
相关论文
共 50 条
  • [41] How particular is the physics of the free energy principle?
    Aguilera, Miguel
    Millidge, Beren
    Tschantz, Alexander
    Buckley, Christopher L.
    PHYSICS OF LIFE REVIEWS, 2022, 40 : 24 - 50
  • [42] An Investigation of the Free Energy Principle for Emotion Recognition
    Demekas, Daphne
    Parr, Thomas
    Friston, Karl J.
    FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2020, 14 (14)
  • [43] Some Interesting Observations on the Free Energy Principle
    Friston, Karl J.
    Da Costa, Lancelot
    Parr, Thomas
    ENTROPY, 2021, 23 (08)
  • [44] A free energy principle for generic quantum systems
    Fields, Chris
    Friston, Karl
    Glazebrook, James F.
    Levin, Michael
    PROGRESS IN BIOPHYSICS & MOLECULAR BIOLOGY, 2022, 173 : 36 - 59
  • [45] Learned uncertainty: The free energy principle in anxiety
    McGovern, H. T.
    De Foe, Alexander
    Biddell, Hannah
    Leptourgos, Pantelis
    Corlett, Philip
    Bandara, Kavindu
    Hutchinson, Brendan T.
    FRONTIERS IN PSYCHOLOGY, 2022, 13
  • [46] Kinetic Energy and the Free Energy Principle in the Birth of Human Life
    Miyagi, Yasunari
    Mio, Yasuyuki
    Yumoto, Keitaro
    Hirata, Rei
    Habara, Toshihiro
    Hayashi, Nobuyoshi
    REPRODUCTIVE MEDICINE, 2024, 5 (02): : 65 - 80
  • [47] An Overview of the Free Energy Principle and Related Research
    Zhang, Zhengquan
    Xu, Feng
    NEURAL COMPUTATION, 2024, 36 (05) : 963 - 1021
  • [48] Codebook-Based Hybrid Beamforming Using Combined Phase Shifters of High and Low Resolutions
    Xu, Ke
    Zheng, Fu-Chun
    Xu, Hongguang
    Zhu, Xu
    Leung, Ka-Cheong
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2021, 10 (12) : 2683 - 2687
  • [49] Application of the Free Energy Principle to Estimation and Control
    van de Laar, Thijs
    Ozcelikkale, Ayca
    Wymeersch, Henk
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2021, 69 : 4234 - 4244
  • [50] Beam Training Based on Dynamic Hierarchical Codebook for Millimeter Wave Massive MIMO
    Chen, Kangjian
    Qi, Chenhao
    IEEE COMMUNICATIONS LETTERS, 2019, 23 (01) : 132 - 135