Beamforming with Free Energy Principle under Hierarchical Codebook

被引:0
作者
Otoshi, Tatsuya [1 ]
Murata, Masayuki [2 ]
机构
[1] Osaka Univ, Grad Sch Econ, Osaka, Japan
[2] Osaka Univ, Grad Sch Informat Sci & Technol, Osaka, Japan
来源
2024 INTERNATIONAL CONFERENCE ON COMPUTING, NETWORKING AND COMMUNICATIONS, ICNC | 2024年
关键词
Beamforming; Beyond; 5G; Active Inference; Free Energy Principle; Hierarchical Codebook; MASSIVE MIMO; DESIGN;
D O I
10.1109/CNC59896.2024.10555936
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Beamforming plays a crucial role in enhancing the performance of wireless communication systems. However, achieving optimal beamforming entails a trade-off between exploration and exploitation, where the system needs to balance the exploration of different beam directions with the exploitation of the best available beam. Motivated by the exploration-exploitation trade-off, we propose the FEP method, which leverages hierarchical modeling and adaptive beam switching to optimize this trade-off. Through simulations in a dynamic environment, we evaluate the performance of the FEP method in terms of expected free energy minimization and signal-to-interference-plus-noise ratio (SINR) maximization. The results demonstrate that the FEP method effectively maintains high SINR levels through adaptive beam direction selection, reflecting efficient exploitation. Comparative analysis with other beamforming methods further highlights the superior performance of the FEP method in terms of average signal quality and stability.
引用
收藏
页码:511 / 517
页数:7
相关论文
共 16 条
[1]   On the Design Details of SS/PBCH, Signal Generation and PRACH in 5G-NR [J].
Chakrapani, Arvind .
IEEE ACCESS, 2020, 8 :136617-136637
[2]   Massive MIMO Systems for 5G and beyond Networks-Overview, Recent Trends, Challenges, and Future Research Direction [J].
Chataut, Robin ;
Akl, Robert .
SENSORS, 2020, 20 (10)
[3]  
Chen JW, 2022, Arxiv, DOI arXiv:2212.07847
[4]   A free energy principle for the brain [J].
Friston, Karl J. ;
Kilner, James ;
Harrison, Lee .
JOURNAL OF PHYSIOLOGY-PARIS, 2006, 100 (1-3) :70-87
[5]   The free-energy principle: a unified brain theory? [J].
Friston, Karl J. .
NATURE REVIEWS NEUROSCIENCE, 2010, 11 (02) :127-138
[6]  
Heins C., 2022, arXiv, DOI [DOI 10.21105/JOSS.04098, 10.48550/ARXIV.2201.03904, DOI 10.48550/ARXIV.2201.03904]
[7]   Deep Active Inference and Scene Construction [J].
Heins, R. Conor ;
Mirza, M. Berk ;
Parr, Thomas ;
Friston, Karl ;
Kagan, Igor ;
Pooresmaeili, Arezoo .
FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2020, 3
[8]   The Role of Small Cells, Coordinated Multipoint, and Massive MIMO in 5G [J].
Jungnickel, Volker ;
Manolakis, Konstantinos ;
Zirwas, Wolfgang ;
Panzner, Berthold ;
Braun, Volker ;
Lossow, Moritz ;
Sternad, Mikael ;
Apelfroejd, Rikke ;
Svensson, Tommy .
IEEE COMMUNICATIONS MAGAZINE, 2014, 52 (05) :44-51
[9]   Local Observations-Based Energy-Efficient Multi-Cell Beamforming via Multi-Agent Reinforcement Learning [J].
Yu K. ;
Wu G. ;
Li S. ;
Li G.Y. .
Journal of Communications and Information Networks, 2022, 7 (02) :170-180
[10]   Terahertz Multi-User Massive MIMO With Intelligent Reflecting Surface: Beam Training and Hybrid Beamforming [J].
Ning, Boyu ;
Chen, Zhi ;
Chen, Wenrong ;
Du, Yiming ;
Fang, Jun .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2021, 70 (02) :1376-1393