Multi-scale pore network fusion and upscaling of microporosity using artificial neural network

被引:0
作者
Moslemipour, Abolfazl [1 ,2 ]
Sadeghnejad, Saeid [1 ,3 ]
Enzmann, Frieder [2 ]
Khoozan, Davood [1 ]
Hupfer, Sarah [3 ]
Schaefer, Thorsten [3 ]
Kersten, Michael [2 ]
机构
[1] Tarbiat Modares Univ, Fac Chem Engn, Dept Petr Engn, Tehran, Iran
[2] Johannes Gutenberg Univ Mainz, Geosci Inst, D-55099 Mainz, Germany
[3] Friedrich Schiller Univ Jena, Inst Geosci, Appl Geol, D-07749 Jena, Germany
关键词
Digital rock physics; Unresolved area; Dual-scale PNM; Gigantic PNM; Artificial neural network; PERMEABILITY; RECONSTRUCTION; MODEL;
D O I
10.1016/j.marpetgeo.2025.107349
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Digital Rock Physics can significantly enhance our understanding of rock behavior. However, modeling heterogeneous rocks remains challenging because of the trade-off between resolution and field of view. To address this, researchers have developed multi-scale pore network models (PNMs), which integrate PNMs from different scales to create unified multi-scale PNM. Various methodologies exist for merging PNMs from different resolutions, but they often suffer from inaccuracy, high runtime and significant memory consumption, particularly when microporosity is integrated into larger scales. This study introduces a novel fusion and an innovative upscaling approach for efficient multi-scale PNM reconstruction of rocks containing microporosity. Our methods separate resolved and unresolved porosities using different voxel sizes from CT scans at multiple resolutions. Resolved regions have larger voxel sizes, while unresolved areas retain smaller voxel sizes. We extract macroPNM from the resolved regions and generate stochastic micro-PNM for the unresolved areas. An artificial neural network (ANN), trained on micro-PNM, links micro- and macro-PNMs. The multi-scale PNMs generated using the ANN method had an average permeability of 252 +/- 3 mD, closely matching the laboratory-measured permeability of the rock (257 mD). In contrast, the average permeability of multi-scale PNMs reconstructed using the statistical method was significantly higher, at 308 +/- 38 mD. Consequently, the ANN-based reconstruction method, owing to the proper connection between scales, improved the accuracy of permeability prediction by approximately 90% compared to the statistical reconstruction method. In the next step, each microPNM is upscaled to a base pore based on its effective hydraulic conductance. These base pores are then connected to the macro-PNM using a novel approach. We utilized synchrotron CT images of an Indiana limestone rock at two resolutions as our training dataset. The single- and multi-phase flow analysis of the fused PNM demonstrated excellent agreement with laboratory-measured rock properties. Our upscaling method also reduced runtime by up to 40% (from 312 to 190 CPU-seconds) and memory consumption by approximately 68% (from 25 GB to 8 GB), all without compromising predictive accuracy.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] Multi-Scale Feature Fusion Convolutional Neural Network for Concurrent Segmentation of Left Ventricle and Myocardium in Cardiac MR Images
    Qi, Lin
    Zhang, Haoran
    Cao, Xuehao
    Lyu, Xuyang
    Xu, Lisheng
    Yang, Benqiang
    Ou, Yangming
    JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS, 2020, 10 (05) : 1023 - 1032
  • [22] Multi-Scale Attention Network for Image Cropping
    Lian, Tianpei
    Xian, Ke
    Pan, Zhiyu
    Hong, Chaoyi
    Cao, Zhiguo
    Zhong, Weicai
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 2640 - 2645
  • [23] Multi-scale supervised network for crowd counting
    Wang, Yongjie
    Zhang, Wei
    Huang, Dongxiao
    Liu, Yanyan
    Zhu, Jianghua
    IET IMAGE PROCESSING, 2020, 14 (17) : 4701 - 4707
  • [24] Multi-scale and multi-channel neural network for click-through rate prediction
    Zhang, Jinjin
    Ma, Chenhui
    Zhong, Chengliang
    Zhao, Peng
    Mu, Xiaodong
    NEUROCOMPUTING, 2022, 480 : 157 - 168
  • [25] MTSF: Multi-Scale Temporal-Spatial Fusion Network for Driver Attention Prediction
    Jin, Lisheng
    Ji, Bingdong
    Guo, Baicang
    Wang, Huanhuan
    Han, Zhuotong
    Liu, Xingchen
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2025, 26 (02) : 1494 - 1509
  • [26] A hybrid network based on multi-scale convolutional neural network and bidirectional gated recurrent unit for EEG denoising
    Li, Qiang
    Zhou, Yan
    Ren, Junxiao
    Wu, Qiao
    Zhao, Ji
    NEUROSCIENCE, 2025, 572 : 155 - 170
  • [27] Dynamic texture representation using a deep multi-scale convolutional network
    Arashloo, Shervin Rahimzadeh
    Amirani, Mehdi Chehel
    Noroozi, Ardeshir
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2017, 43 : 89 - 97
  • [28] Traffic Sign Detection Using a Multi-Scale Recurrent Attention Network
    Tian, Yan
    Gelernter, Judith
    Wang, Xun
    Li, Jianyuan
    Yu, Yizhou
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2019, 20 (12) : 4466 - 4475
  • [29] Visual saliency prediction using multi-scale attention gated network
    Sun, Yubao
    Zhao, Mengyang
    Hu, Kai
    Fan, Shaojing
    MULTIMEDIA SYSTEMS, 2022, 28 (01) : 131 - 139
  • [30] The Impacts of Pore Structure and Relative Humidity on Gas Transport in Shale: A Numerical Study by the Image-Based Multi-scale Pore Network Model
    Song, Wenhui
    Yao, Jun
    Zhang, Kai
    Sun, Hai
    Yang, Yongfei
    TRANSPORT IN POROUS MEDIA, 2022, 144 (01) : 229 - 253