Combatting Digital Financial Fraud through Strategic Deep Learning Approaches

被引:0
|
作者
Sharma, Rishabh [1 ]
Sharma, Ajay [2 ]
机构
[1] Chitkara Univ, Ctr Res Impact & Outcome, Rajpura 140401, Punjab, India
[2] Chitkara Univ, Chitkara Ctr Res & Dev, Kallujhanda 174103, Himachal Prades, India
来源
2ND INTERNATIONAL CONFERENCE ON SUSTAINABLE COMPUTING AND SMART SYSTEMS, ICSCSS 2024 | 2024年
关键词
Machine Learning; Deep Learning; Fraud Detection; Digital Finance; Convolutional Neural Networks; Recurrent Neural Networks; Financial Security; Anomaly Detection;
D O I
10.1109/ICSCSS60660.2024.10625249
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Tremendous growth of electronic finance arrived concurrently with financial fraud, in turn, requiring the adoption of altered methods of fraud detection. This research work is concerned with the comparative effectiveness of machine learning and deep learning models, crafting Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) as an illustration, in upgrading fraud detection power within digital finance infrastructures. Utilizing a rich database of transactional data, both supervised and unsupervised learning tools are employed to establish the suspicious ones. This methodology consists of data cleaning using automatic approaches, machine learning algorithms such as CNNs and RNNs for modeling, and key metrics that involve accuracy, sensitivity, specificity, AUC, and ROC curves when evaluating the model. The analysis shows, that the RNN architecture performs even better than the CNN model observing an incredible accuracy of 95.8%, sensitivity of 93.7%, and specificity of 97. 5 % with an AUC of 0. 972. Besides, analysis showed that the models consistently performed well across various transaction amounts, indicating robustness and applicability in various situations. This underlines the fact that deep learning models are most effective when dealing with the occurrences of financial transactions that are fraudulent. Financial institutions as well as other entities that accept money can enjoy the advantages that the use of highly developed analytical tools provides for instance in fraud prevention and this is happening in the era of rapidly inflating financial crime. The next steps for research projects can be provided by development of the integration of unsupervised learning models and real-time fraud detection systems through which the next generation of outstanding fraud detection systems will be created.
引用
收藏
页码:824 / 828
页数:5
相关论文
共 50 条
  • [1] Deep learning for detecting financial statement fraud
    Craja, Patricia
    Kim, Alisa
    Lessmann, Stefan
    DECISION SUPPORT SYSTEMS, 2020, 139
  • [2] Online Recruitment Fraud (ORF) Detection Using Deep Learning Approaches
    Akram, Natasha
    Irfan, Rabia
    Al-Shamayleh, Ahmad Sami
    Kousar, Adila
    Qaddos, Abdul
    Imran, Muhammad
    Akhunzada, Adnan
    IEEE ACCESS, 2024, 12 : 109388 - 109408
  • [3] Fraud Detection using Machine Learning and Deep Learning
    Raghavan, Pradheepan
    El Gayar, Neamat
    PROCEEDINGS OF 2019 INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND KNOWLEDGE ECONOMY (ICCIKE' 2019), 2019, : 335 - 340
  • [4] Deep Learning Approach for Intelligent Financial Fraud Detection System
    Mubalaike, Aji Mubarek
    Adali, Esref
    2018 3RD INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ENGINEERING (UBMK), 2018, : 598 - 603
  • [5] On the Use of a Sequential Deep Learning Scheme for Financial Fraud Detection
    Zioviris, Georgios
    Kolomvatsos, Kostas
    Stamoulis, George
    INTELLIGENT COMPUTING, VOL 2, 2021, 284 : 507 - 523
  • [6] A Financial Fraud Detection Model Based on LSTM Deep Learning Technique
    Alghofaili, Yara
    Albattah, Albatul
    Rassam, Murad A.
    JOURNAL OF APPLIED SECURITY RESEARCH, 2020, 15 (04) : 498 - 516
  • [7] Financial Cybercrime: A Comprehensive Survey of Deep Learning Approaches to Tackle the Evolving Financial Crime Landscape
    Nicholls, Jack
    Kuppa, Aditya
    Le-Khac, Nhien-An
    IEEE ACCESS, 2021, 9 : 163965 - 163986
  • [8] Deep learning for financial applications : A survey
    Ozbayoglu, Ahmet Murat
    Gudelek, Mehmet Ugur
    Sezer, Omer Berat
    APPLIED SOFT COMPUTING, 2020, 93
  • [9] Fraud Detection Using Machine Learning and Deep Learning
    Gandhar A.
    Gupta K.
    Pandey A.K.
    Raj D.
    SN Computer Science, 5 (5)
  • [10] Identification and prevention of financial securities fraud based on deep learning
    Guo, Debing
    JOURNAL OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING, 2024, 24 (4-5) : 2673 - 2688