Bidirectional S-bridge coordination in the magnetic Au/FeOxSy catalyst for the catalytic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid

被引:0
|
作者
Ruan, Yu [1 ]
Wu, Shaoyi [1 ]
Lu, Yingxin [1 ]
Xu, Tiefeng [1 ,2 ]
Chen, Wenxing [1 ,2 ]
Lu, Wangyang [1 ,2 ]
机构
[1] Zhejiang Sci Tech Univ, State Key Lab Biobased Fiber Mat, Hangzhou 310018, Peoples R China
[2] Zhejiang Prov Innovat Ctr Adv Text Technol, Shaoxing 312000, Peoples R China
关键词
SELECTIVE OXIDATION; AEROBIC OXIDATION; OXIDE; ADSORPTION; CHEMICALS; AU; PD;
D O I
10.1039/d4ta09277e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The aerobic oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA) is a promising approach for producing renewable biodegradable plastics. However, thus far, the development of catalytic oxidation processes operating under mild conditions and the design of highly stable catalysts have been challenging. Herein, the magnetic catalyst Au/FeOxSy was synthesised by doping S into the Fe/Au bimetallic structure. The reaction was conducted in water at 60 degrees C under air and atmospheric pressure, achieving 100% conversion of HMF and a FDCA yield of 98.5%. The catalytic performance of S-doping Au/FeOx was 4.73 times greater than that of undoped Au/FeOx under the same conditions. Furthermore, the catalyst demonstrated excellent cycling stability, with the FDCA yield maintained above 93% after at least 30 cycles. The introduction of S altered the electronic configuration of Au through the formation of Au-S bonds, thereby enhancing electron mobility and catalytic activity. Additionally, the interaction of S with FeOx led to the formation of Fe-O-S bonds, which fortified the structure of the catalyst and ensured prolonged cycling stability. Thus, this study effectively converted HMF to FDCA under mild conditions through S incorporation, offering a novel approach for preparing metal catalysts and laying a robust foundation for utilising FDCA as a sustainable alternative to terephthalic acid in bio-based polyester production.
引用
收藏
页码:10814 / 10824
页数:11
相关论文
共 50 条
  • [31] Mechanistic kinetic modelling of enzyme-catalysed oxidation reactions of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA)
    Cajnko, Misa Mojca
    Grilc, Miha
    Likozar, Blaz
    CHEMICAL ENGINEERING SCIENCE, 2021, 246
  • [32] Reaction Mechanism and Kinetics of the Liquid-Phase Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid
    Chen, Shuaibo
    Guo, Xusheng
    Ban, Heng
    Pan, Teng
    Zheng, Liping
    Cheng, Youwei
    Wang, Lijun
    Li, Xi
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2021, 60 (47) : 16887 - 16898
  • [33] Ru/MgO-catalysed selective aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid
    Lokhande, Priya
    Dhepe, Paresh L.
    Wilson, Karen
    Lee, Adam F.
    AUSTRALIAN JOURNAL OF CHEMISTRY, 2024, 77 (10)
  • [34] Selective oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over Au/CeO2 catalysts: the morphology effect of CeO2+
    Li, Qingqing
    Wang, Haiyong
    Tian, Zhipeng
    Weng, Yujing
    Wang, Chenguang
    Ma, Jianru
    Zhu, Chaofeng
    Li, Wenzhi
    Liu, Qiying
    Ma, Longlong
    CATALYSIS SCIENCE & TECHNOLOGY, 2019, 9 (07) : 1570 - 1580
  • [35] Aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over Co/Mn-lignin coordination complexes-derived catalysts
    Zhou, Hua
    Xu, Huanghui
    Liu, Yun
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2019, 244 : 965 - 973
  • [36] A new approach for the aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid without using transition metal catalysts
    Zhang, Lu
    Luo, Xiaolan
    Li, Yebo
    JOURNAL OF ENERGY CHEMISTRY, 2018, 27 (01) : 243 - 249
  • [37] Selective synthesis of 2, 5-furandicarboxylic acid by oxidation of 5-hydroxymethylfurfural over MnFe2O4 catalyst
    Gawade, Anil B.
    Nakhate, Akhil V.
    Yadav, Ganapati D.
    CATALYSIS TODAY, 2018, 309 : 119 - 125
  • [38] A Facile Synthesis Route to AuPd Alloys for the Selective Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid
    Peng, Yani
    Qiu, Boya
    Ding, Shengzhe
    Hu, Min
    Zhang, Yuxin
    Jiao, Yilai
    Fan, Xiaolei
    Parlett, Christopher M. A.
    CHEMPLUSCHEM, 2024, 89 (01):
  • [39] Effect of MnO2 Crystal Structure on Aerobic Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid
    Hayashi, Eri
    Yamaguchi, Yui
    Kamata, Keigo
    Tsunoda, Naoki
    Kumagai, Yu
    Oba, Fumiyasu
    Hara, Michikazu
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2019, 141 (02) : 890 - 900
  • [40] Aerobic Oxidation of 5-Hydroxymethylfurfural into 2,5-Furandicarboxylic Acid over Gold Stabilized on Zirconia-Based Supports
    Rabee, Abdallah I. M.
    Le, Son Dinh
    Higashimine, Koichi
    Nishimura, Shun
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2020, 8 (18): : 7150 - 7161