Halogen-bond chemistry-rectified hypervalent tellurium redox kinetics towards high-energy Zn batteries

被引:0
|
作者
Qi, Jintu [1 ]
Tang, Yongchao [1 ,2 ]
Wei, Yue [3 ]
Liu, Guigui [1 ]
Yan, Jianping [1 ]
Feng, Zhenfeng [1 ]
Han, Zixin [1 ]
Ye, Minghui [1 ]
Du, Wencheng [2 ,4 ]
Yang, Qi [5 ]
Zhang, Yufei [1 ,2 ]
Wen, Zhipeng [1 ,2 ]
Liu, Xiaoqing [1 ,2 ]
Li, Cheng Chao [1 ,2 ]
机构
[1] Guangdong Univ Technol, Sch Chem Engn & Light Ind, Guangzhou 510006, Peoples R China
[2] Jieyang Ctr, Guangdong Prov Lab Chem & Fine Chem Engn, Jieyang 515200, Peoples R China
[3] Dongguan Univ Technol, Sch Environm & Civil Engn, Dongguan 523808, Guangdong, Peoples R China
[4] Guangdong Univ Technol, Sch Adv Mfg, Jieyang 522000, Peoples R China
[5] Beijing Univ Chem Technol, Coll Chem Engn, State Key Lab Chem Resource Engn, Beijing 100029, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1039/d4ee04806g
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Hypervalent Te redox (Te0/Te4+) in ionic liquid electrolytes (ILEs) is promising for energetic Zn batteries. However, the energy contribution of Te0/Te4+ is only one-third of the total redox-amphoteric conversion, so the contribution should be maximized for energy upgradation. The underlying kinetics-limited factor is vital but usually overlooked in previous explorations. Herein, we unlock a halogen-bond chemistry-rectified Te0/Te4+ redox with an almost maximized contribution for 700 W h kgTe-1 Zn batteries. The Zn-X bond barriers in ZnX42- (X = Cl, Br) species from ILEs play crucial roles in rectifying the Te0/Te4+ redox kinetics, especially in localized concentrated ILEs, resulting in sharply different redox conversion depths. When ZnBr42- with a weak Zn-Br bond (34.96 kcal mol-1) is used as the activator, the Te0/Te4+ redox contribution can be maximized to similar to 90.0% over 5000 cycles at 5 A g-1, 1.8-fold higher than that with the ZnCl42- activator via the strong Zn-Cl bond (102.81 kcal mol-1), and surpassing those in most aqueous systems (ca. 33.0%). This work decodes the halogen-bond chemistry-rectified kinetics to maximize the hypervalent redox contribution towards high-energy Zn batteries, which could apply to other chalcogen conversion batteries.
引用
收藏
页码:807 / 817
页数:11
相关论文
共 16 条
  • [1] A High-Energy Tellurium Redox-Amphoteric Conversion Cathode Chemistry for Aqueous Zinc Batteries
    Du, Jingwei
    Zhao, Yirong
    Chu, Xingyuan
    Wang, Gang
    Neumann, Christof
    Xu, Hao
    Li, Xiaodong
    Loeffler, Markus
    Lu, Qiongqiong
    Zhang, Jiaxu
    Li, Dongqi
    Zou, Jianxin
    Mikhailova, Daria
    Turchanin, Andrey
    Feng, Xinliang
    Yu, Minghao
    ADVANCED MATERIALS, 2024, 36 (19)
  • [2] Addressing the Sluggish Kinetics of Sulfur Redox for High-Energy Mg-S Batteries
    Li, Zhenyou
    Welle, Alexander
    Vincent, Smobin
    Wang, Liping
    Fuchs, Stefan
    Riedel, Sibylle
    Roy, Ananyo
    Bosubabu, Dasari
    Garcia-Lastra, Juan Maria
    Fichtner, Maximilian
    Zhao-Karger, Zhirong
    ADVANCED ENERGY MATERIALS, 2023, 13 (42)
  • [3] Reversible Zn electrodeposition enabled by interfacial chemistry manipulation for high-energy anode-free Zn batteries
    An, Yongling
    Xu, Bingang
    Tian, Yuan
    Shen, Hengtao
    Man, Quanyan
    Liu, Xinlong
    Yang, Yujue
    Li, Meiqi
    MATERIALS TODAY, 2023, 70 : 93 - 103
  • [4] A chemistry and material perspective on lithium redox flow batteries towards high-density electrical energy storage
    Zhao, Yu
    Ding, Yu
    Li, Yutao
    Peng, Lele
    Byon, Hye Ryung
    Goodenough, John B.
    Yu, Guihua
    CHEMICAL SOCIETY REVIEWS, 2015, 44 (22) : 7968 - 7996
  • [5] Multi-Electron Reactions enabled by Anion-Based Redox Chemistry for High-Energy Multivalent Rechargeable Batteries
    Li, Zhenyou
    Vinayan, Bhaghavathi P.
    Jankowski, Piotr
    Njel, Christian
    Roy, Ananyo
    Vegge, Tejs
    Maibach, Julia
    Lastra, Juan Maria Garcia
    Fichtner, Maximilian
    Zhao-Karger, Zhirong
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (28) : 11483 - 11490
  • [6] Multi-Electron Reactions Enabled by Anion-Based Redox Chemistry for High-Energy Multivalent Rechargeable Batteries
    Li, Zhenyou (zhenyou.li@kit.edu); Zhao-Karger, Zhirong (zhirong.zhao-karger@kit.edu), 1600, John Wiley and Sons Inc (132):
  • [7] Unveiling the role of fluorinated interface on anionic redox chemistry in Li-rich layered oxide cathode materials towards high-energy Li metal batteries
    Li, Shihao
    Huang, Zeyu
    Liu, Fangyan
    Gao, Xianggang
    Guo, Juanlang
    Li, Simin
    Hong, Bo
    Lai, Yanqing
    Zhang, Zhian
    ENERGY STORAGE MATERIALS, 2024, 71
  • [8] Beyond the Polysulfide Shuttle and Lithium Dendrite Formation: Addressing the Sluggish Sulfur Redox Kinetics for Practical High-Energy Li-S Batteries
    Zhao, Chen
    Xu, Gui-Liang
    Zhao, Tianshou
    Amine, Khalil
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (40) : 17634 - 17640
  • [9] Beyond the Polysulfide Shuttle and Lithium Dendrite Formation: Addressing the Sluggish Sulfur Redox Kinetics for Practical High-Energy Li-S Batteries
    Zhao, C.
    Xu, G. -L.
    Zhao, T. S.
    Amine, K.
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (41)
  • [10] Bimetallic Coupling Strategy Modulating Electronic Construction to Accelerate Sulfur Redox Reaction Kinetics for High-Energy Flexible Li-S Batteries
    Dong, Hanghang
    Ji, Ying
    Wang, Lei
    Wang, Haichao
    Yang, Chao
    Xiao, Yao
    Chen, Mingzhe
    Wang, Yong
    Chou, Shulei
    Wang, Renheng
    Chen, Shuangqiang
    SMALL, 2024, 20 (49)