YOLO-Faster: An efficient remote sensing object detection method based on AMFFN

被引:0
|
作者
Tong, Yicheng [1 ]
Yue, Guan [1 ]
Fan, Longfei [1 ]
Lyu, Guosen [1 ]
Zhu, Deya [1 ]
Liu, Yan [1 ]
Meng, Boyuan [2 ]
Liu, Shu [1 ]
Mu, Xiaokai [3 ,4 ]
Tian, Congling [1 ]
机构
[1] Hangzhou Zhiyuan Res Inst Co Ltd, R&D Dept 4, Hangzhou, Peoples R China
[2] Zhejiang Univ, Polytech Inst, Hangzhou, Peoples R China
[3] Harbin Engn Univ, Qingdao Innovat & Dev Ctr, Qingdao, Peoples R China
[4] Harbin Engn Univ, Natl Key Lab Autonomous Marine Vehicle Technol, Harbin, Peoples R China
基金
中国国家自然科学基金;
关键词
Remote sensing object detection; deep learning; lightweight network; YOLO; IMAGES;
D O I
10.1177/00368504241280765
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
As a pivotal task within computer vision, object detection finds application across a diverse spectrum of industrial scenarios. The advent of deep learning technologies has significantly elevated the accuracy of object detectors designed for general-purpose applications. Nevertheless, in contrast to conventional terrestrial environments, remote sensing object detection scenarios pose formidable challenges, including intricate and diverse backgrounds, fluctuating object scales, and pronounced interference from background noise, rendering remote sensing object detection an enduringly demanding task. In addition, despite the superior detection performance of deep learning-based object detection networks compared to traditional counterparts, their substantial parameter and computational demands curtail their feasibility for deployment on mobile devices equipped with low-power processors. In response to the aforementioned challenges, this paper introduces an enhanced lightweight remote sensing object detection network, denoted as YOLO-Faster, built upon the foundation of YOLOv5. Firstly, the lightweight design and inference speed of the object detection network is augmented by incorporating the lightweight network as the foundational network within YOLOv5, satisfying the demand for real-time detection on mobile devices. Moreover, to tackle the issue of detecting objects of different scales in large and complex backgrounds, an adaptive multiscale feature fusion network is introduced, which dynamically adjusts the large receptive field to capture dependencies among objects of different scales, enabling better modeling of object detection scenarios in remote sensing scenes. At last, the robustness of the object detection network under background noise is enhanced through incorporating a decoupled detection head that separates the classification and regression processes of the detection network. The results obtained from the public remote sensing object detection dataset DOTA show that the proposed method has a mean average precision of 71.4% and a detection speed of 38 frames per second.
引用
收藏
页数:22
相关论文
共 50 条
  • [41] Detector Consistency Research on Remote Sensing Object Detection
    Zhang, Yuanlin
    Jin, Haiyan
    REMOTE SENSING, 2023, 15 (17)
  • [42] R-YOLO: A YOLO-Based Method for Arbitrary-Oriented Target Detection in High-Resolution Remote Sensing Images
    Hou, Yongjie
    Shi, Gang
    Zhao, Yingxiang
    Wang, Fan
    Jiang, Xian
    Zhuang, Rujun
    Mei, Yunfei
    Ma, Xinjiang
    SENSORS, 2022, 22 (15)
  • [43] Remote Sensing Image Object Detection Based on Angle Classification
    Shi, Pengfei
    Zhao, Zhongxin
    Fan, Xinnan
    Yan, Xijun
    Yan, Wei
    Xin, Yuanxue
    IEEE ACCESS, 2021, 9 : 118696 - 118707
  • [44] Subtask Attention Based Object Detection in Remote Sensing Images
    Xiong, Shengzhou
    Tan, Yihua
    Li, Yansheng
    Wen, Cai
    Yan, Pei
    REMOTE SENSING, 2021, 13 (10)
  • [45] Improved YOLO Network for Free-Angle Remote Sensing Target Detection
    Qing, Yuhao
    Liu, Wenyi
    Feng, Liuyan
    Gao, Wanjia
    REMOTE SENSING, 2021, 13 (11)
  • [46] Object Detection Method Based on Improved YOLOv4 Network for Remote Sensing Images
    Xiao Zhenjiu
    Yang Yueying
    Kong Xiangxu
    LASER & OPTOELECTRONICS PROGRESS, 2023, 60 (06)
  • [47] LGA-YOLO for Vehicle Detection in Remote Sensing Images
    Zhang, Yin
    Wang, Weiyang
    Ye, Mu
    Yan, Junhua
    Yang, Rong
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2025, 18 : 5317 - 5330
  • [48] A Contextual Bidirectional Enhancement Method for Remote Sensing Image Object Detection
    Zhang, Jun
    Xie, Changming
    Xu, Xia
    Shi, Zhenwei
    Pan, Bin
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 : 4518 - 4531
  • [49] CPU Based YOLO: A Real Time Object Detection Algorithm
    Ullah, Md Bahar
    2020 IEEE REGION 10 SYMPOSIUM (TENSYMP) - TECHNOLOGY FOR IMPACTFUL SUSTAINABLE DEVELOPMENT, 2020, : 552 - 555
  • [50] A Complete YOLO-Based Ship Detection Method for Thermal Infrared Remote Sensing Images under Complex Backgrounds
    Li, Liyuan
    Jiang, Linyi
    Zhang, Jingwen
    Wang, Siqi
    Chen, Fansheng
    REMOTE SENSING, 2022, 14 (07)