Thermal properties and stability of Carica papaya fiber-reinforced MgO particulate epoxy composites for advanced thermal applications

被引:0
作者
Murugadoss, Palanivendhan [1 ]
Reddy, m Sudhakara [2 ]
Das, Sankar Narayan [3 ]
Bareja, Lakshay [4 ]
Gokulnath, R. [5 ]
Mishra, Ruby [6 ]
Priya, K. Kamakshi [7 ]
机构
[1] SRM Inst Sci & Technol, Coll Engn & Technol, Ctr Automot Mat, Dept Automobile Engn, Kattankulathur, Tamil Nadu, India
[2] Jain, Dept Phys & Elect, Bangalore, Karnataka, India
[3] Siksha O Anusandhan, Dept Mech Engn, Bhubaneswar, Odisha, India
[4] Chitkara Univ, Chitkara Inst Engn & Technol, Ctr Res & Outcome, Rajpura, Punjab, India
[5] Sathyabama Inst Sci & Technol, Dept Aeronaut Engn, Chennai, Tamilnadu, India
[6] Kalinga Inst Ind Technol KIIT Deemed be Univ, Sch Mech Engn, Bhubaneswar 751024, Odisha, India
[7] Saveetha Univ, Saveetha Inst Med & Tech Sci SIMATS, Saveetha Sch Engn, Dept Phys, Chennai, Tamil Nadu, India
关键词
Nanoparticles; Sustainable material; Thermal properties; Thermogravimetric analysis; Thermal insulation;
D O I
10.1016/j.csite.2025.105921
中图分类号
O414.1 [热力学];
学科分类号
摘要
Natural fibers are increasingly being explored in the polymer industry to develop sustainable biocomposites with enhanced functional properties. While plant fibers generally suffer from thermal stability limitations, their integration with suitable fillers and resin matrices can significantly enhance their thermal performance, making them viable for engineering applications. This study investigates the fabrication and characterization of Carica papaya (CP) fiber-reinforced epoxy composites integrated with magnesium oxide (MgO) nanoparticles as fillers and epoxy resin as the matrix. Five composite laminate samples were prepared with varying MgO filler weight fractions to assess their impact on the thermal and mechanical performance of the composites. Fourier-transform infrared spectroscopy confirmed the presence of C-H stretching vibrations attributed to cellulose in CP fibers, with a crystallinity index of 59.8 %. The composites exhibited strong antibacterial properties, further enhancing their functional appeal. The incorporation of MgO fillers significantly improved both thermal and mechanical properties. Notably, the sample with 25 g of MgO filler achieved substantial enhancements, with mechanical properties improving by an average of 15.5 % and thermal properties by 25.7 %. Thermogravimetric analysis (TGA) confirmed that the thermal stability of the composites ranged between 240 degrees C and 410 degrees C, demonstrating a significant improvement over unmodified natural fiber composites. Dynamic mechanical analysis revealed enhanced viscoelastic behavior, indicating better heat resistance and dimensional stability under dynamic thermal loads. Morphological and elemental analyses showed robust interfacial bonding between CP fibers and the MgO-filled matrix, further supporting the material's structural integrity.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Toward tailoring the mechanical and dielectric properties of short glass fiber-reinforced epoxy composites
    Nsengiyumva, Walter
    Zhong, Shuncong
    Chen, Xiaofen
    Makin, Amir Mahmoud
    Chen, Linnan
    Wu, Lixin
    Zheng, Longhui
    POLYMER COMPOSITES, 2024, 45 (01) : 535 - 554
  • [42] Development of high Tg epoxy resin and mechanical properties of its fiber-reinforced composites
    Yi, Jin-Woo
    Um, Moon-Kwang
    Byun, Joon-Hyung
    Lee, Sang-Bok
    Lee, Sang-Kwan
    JOURNAL OF APPLIED POLYMER SCIENCE, 2013, 127 (06) : 4328 - 4333
  • [43] Effect of SiC and graphene nanoparticles on the mechanical properties of carbon fiber-reinforced epoxy composites
    Kosedag, Ertan
    Ekici, Recep
    Yildiz, Nail
    Caliskan, Umut
    POLYMER COMPOSITES, 2023, 44 (12) : 8578 - 8588
  • [44] The mechanical and thermal properties of chopped basalt fiber-reinforced poly (butylene terephthalate) composites: Effect of fiber amount and length
    Arslan, Cagrialp
    Dogan, Mehmet
    JOURNAL OF COMPOSITE MATERIALS, 2019, 53 (17) : 2465 - 2475
  • [45] Investigation of Fiber Surface Treatment Effect on Thermal, Mechanical and Acoustical Properties of Date Palm Fiber-Reinforced Cementitious Composites
    Marwa Lahouioui
    Rim Ben Arfi
    Magali Fois
    Laurent Ibos
    Achraf Ghorbal
    Waste and Biomass Valorization, 2020, 11 : 4441 - 4455
  • [46] Mechanical and thermal properties of wood fiber reinforced geopolymer composites
    Furtos, Gabriel
    Molnar, Luminita
    Silaghi-Dumitrescu, Laura
    Pascuta, Petru
    Korniejenko, Kinga
    JOURNAL OF NATURAL FIBERS, 2022, 19 (13) : 6676 - 6691
  • [47] Epoxy matrix composites reinforced with purified carbon nanotubes for thermal management applications
    Chen, Junjie
    Gao, Xuhui
    Song, Wenya
    POLYMERS FOR ADVANCED TECHNOLOGIES, 2019, 30 (11) : 2770 - 2780
  • [48] Natural Fiber-Reinforced Polylactic Acid, Polylactic Acid Blends and Their Composites for Advanced Applications
    Ilyas, R. A.
    Zuhri, M. Y. M.
    Aisyah, H. A.
    Asyraf, M. R. M.
    Hassan, S. A.
    Zainudin, E. S.
    Sapuan, S. M.
    Sharma, S.
    Bangar, S. P.
    Jumaidin, R.
    Nawab, Y.
    Faudzi, A. A. M.
    Abral, H.
    Asrofi, M.
    Syafri, E.
    Sari, N. H.
    POLYMERS, 2022, 14 (01)
  • [49] Enhanced mechanical and thermal properties of carbon fiber-reinforced thermoplastic copoly(phthalazinone ether sulfone ketone) composites
    Wang, Bing
    Li, Nan
    Fu, Xin
    Cheng, Shan
    Zhao, Na
    Zhang, Jiazi
    Hu, Fangyuan
    Bao, Qingguang
    Hao, Haoyue
    Jian, Xigao
    POLYMER COMPOSITES, 2023, 44 (02) : 800 - 810
  • [50] Effect of Silicon Carbide on the Mechanical and Thermal Properties of Snake Grass/Sisal Fiber Reinforced Hybrid Epoxy Composites
    Vijayakumar, M.
    Kumaresan, K.
    Gopal, R.
    Vetrivel, S. D.
    Vijayan, V.
    JOURNAL OF NEW MATERIALS FOR ELECTROCHEMICAL SYSTEMS, 2021, 24 (02) : 120 - 128