Thermal properties and stability of Carica papaya fiber-reinforced MgO particulate epoxy composites for advanced thermal applications

被引:0
作者
Murugadoss, Palanivendhan [1 ]
Reddy, m Sudhakara [2 ]
Das, Sankar Narayan [3 ]
Bareja, Lakshay [4 ]
Gokulnath, R. [5 ]
Mishra, Ruby [6 ]
Priya, K. Kamakshi [7 ]
机构
[1] SRM Inst Sci & Technol, Coll Engn & Technol, Ctr Automot Mat, Dept Automobile Engn, Kattankulathur, Tamil Nadu, India
[2] Jain, Dept Phys & Elect, Bangalore, Karnataka, India
[3] Siksha O Anusandhan, Dept Mech Engn, Bhubaneswar, Odisha, India
[4] Chitkara Univ, Chitkara Inst Engn & Technol, Ctr Res & Outcome, Rajpura, Punjab, India
[5] Sathyabama Inst Sci & Technol, Dept Aeronaut Engn, Chennai, Tamilnadu, India
[6] Kalinga Inst Ind Technol KIIT Deemed be Univ, Sch Mech Engn, Bhubaneswar 751024, Odisha, India
[7] Saveetha Univ, Saveetha Inst Med & Tech Sci SIMATS, Saveetha Sch Engn, Dept Phys, Chennai, Tamil Nadu, India
关键词
Nanoparticles; Sustainable material; Thermal properties; Thermogravimetric analysis; Thermal insulation;
D O I
10.1016/j.csite.2025.105921
中图分类号
O414.1 [热力学];
学科分类号
摘要
Natural fibers are increasingly being explored in the polymer industry to develop sustainable biocomposites with enhanced functional properties. While plant fibers generally suffer from thermal stability limitations, their integration with suitable fillers and resin matrices can significantly enhance their thermal performance, making them viable for engineering applications. This study investigates the fabrication and characterization of Carica papaya (CP) fiber-reinforced epoxy composites integrated with magnesium oxide (MgO) nanoparticles as fillers and epoxy resin as the matrix. Five composite laminate samples were prepared with varying MgO filler weight fractions to assess their impact on the thermal and mechanical performance of the composites. Fourier-transform infrared spectroscopy confirmed the presence of C-H stretching vibrations attributed to cellulose in CP fibers, with a crystallinity index of 59.8 %. The composites exhibited strong antibacterial properties, further enhancing their functional appeal. The incorporation of MgO fillers significantly improved both thermal and mechanical properties. Notably, the sample with 25 g of MgO filler achieved substantial enhancements, with mechanical properties improving by an average of 15.5 % and thermal properties by 25.7 %. Thermogravimetric analysis (TGA) confirmed that the thermal stability of the composites ranged between 240 degrees C and 410 degrees C, demonstrating a significant improvement over unmodified natural fiber composites. Dynamic mechanical analysis revealed enhanced viscoelastic behavior, indicating better heat resistance and dimensional stability under dynamic thermal loads. Morphological and elemental analyses showed robust interfacial bonding between CP fibers and the MgO-filled matrix, further supporting the material's structural integrity.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Enhanced Thermal and Flexural Properties of Alkalized Date Palm/Kenaf Fiber-Reinforced Epoxy Hybrid Composites: A Comparative Study of Untreated and Treated Fibers
    Ghori, Syed Waheedullah
    Rao, G. Srinivasa
    Rajhi, Ali A.
    Duhduh, Alaauldeen A.
    Tirth, Vineet
    JOURNAL OF NATURAL FIBERS, 2024, 21 (01)
  • [32] Mechanical and thermal properties of basalt fiber reinforced epoxy composites modified with CaCO3 nanoparticles
    Tripathy, Priyanka
    Biswas, Sandhyarani
    POLYMER COMPOSITES, 2022, 43 (11) : 7789 - 7803
  • [33] Thermal and Mechanical Properties of Epoxy/Carbon Fiber Composites Reinforced with Multi-walled Carbon Nanotubes
    Kim, Sun-Kuk
    Kim, Jeong Tai
    Kim, Hee-Cheul
    Rhee, Kyong-Yop
    Kathi, John
    JOURNAL OF MACROMOLECULAR SCIENCE PART B-PHYSICS, 2012, 51 (1-3): : 358 - 367
  • [34] Review of Functional Properties of Natural Fiber-Reinforced Polymer Composites: Thermal Insulation, Biodegradation and Vibration Damping Properties
    Takagi, Hitoshi
    ADVANCED COMPOSITE MATERIALS, 2019, 28 (05) : 525 - 543
  • [35] Mechanical and Thermal Properties of 3D-Printed Continuous Bamboo Fiber-Reinforced PE Composites
    Qiao, Haiyu
    Li, Qian
    Chen, Yani
    Liu, Yayun
    Jiang, Ning
    Wang, Chuanyang
    MATERIALS, 2025, 18 (03)
  • [36] Enhancing thermal and tribological properties of fiber-reinforced resin-based composites with carbon nanomaterial coatings
    Lin, Mingcen
    Yao, Ye
    Zhao, Xintao
    Xiang, Hongjia
    Zhang, Chunhui
    POLYMER COMPOSITES, 2025,
  • [37] Investigation of Fiber Surface Treatment Effect on Thermal, Mechanical and Acoustical Properties of Date Palm Fiber-Reinforced Cementitious Composites
    Lahouioui, Marwa
    Ben Arfi, Rim
    Fois, Magali
    Ibos, Laurent
    Ghorbal, Achraf
    WASTE AND BIOMASS VALORIZATION, 2020, 11 (08) : 4441 - 4455
  • [38] Orange Wood Fiber Reinforced Polypropylene Composites: Thermal Properties
    Reixach, Rafel
    Puig, Josep
    Alberto Mendez, Jose
    Girones, Jordi
    Espinach, Francesc X.
    Arbat, Gerard
    Mutje, Pere
    BIORESOURCES, 2015, 10 (02): : 2156 - 2166
  • [39] Effect of thermal cycling on mechanical and thermal properties of basalt fibre-reinforced epoxy composites
    Azimpour-Shishevan, Farzin
    Akbulut, Hamit
    Mohtadi-Bonab, M. A.
    BULLETIN OF MATERIALS SCIENCE, 2020, 43 (01)
  • [40] Effect of thermal cycling on mechanical and thermal properties of basalt fibre-reinforced epoxy composites
    Farzin Azimpour-Shishevan
    Hamit Akbulut
    M A Mohtadi-Bonab
    Bulletin of Materials Science, 2020, 43