Cortical development in the structural model and free energy minimization

被引:2
作者
Wright, James [1 ]
Bourke, Paul [2 ]
机构
[1] Univ Auckland, Ctr Brain Res, Sch Med, 85 Pk Rd, Grafton, Auckland, New Zealand
[2] Univ Auckland, Sch Med, Dept Psychol Med, 85 Pk Rd, Grafton, Auckland, New Zealand
基金
英国惠康基金;
关键词
free energy principle; predictive coding; Markov blankets; cortical development; structural model; SYNCHRONOUS OSCILLATION; ORIENTATION COLUMNS; SPATIAL-FREQUENCY; CONNECTIONS; PRINCIPLE; INFERENCE; PATTERN; CORTEX; BRAIN; LAYER;
D O I
10.1093/cercor/bhae416
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
A model of neocortical development invoking Friston's Free Energy Principle is applied within the Structural Model of Barbas et al. and the associated functional interpretation advanced by Tucker and Luu. Evolution of a neural field with Hebbian and anti-Hebbian plasticity, maximizing synchrony and minimizing axonal length by apoptotic selection, leads to paired connection systems with mirror symmetry, interacting via Markov blankets along their line of reflection. Applied to development along the radial lines of development in the Structural Model, a primary Markov blanket emerges between the centrifugal synaptic flux in layers 2,3 and 5,6, versus the centripetal flow in layer 4, and axonal orientations in layer 4 give rise to the differing shape and movement sensitivities characteristic of neurons of dorsal and ventral neocortex. Prediction error minimization along the primary blanket integrates limbic and subcortical networks with the neocortex. Synaptic flux bypassing the blanket triggers the arousal response to surprising stimuli, enabling subsequent adaptation. As development progresses ubiquitous mirror systems separated by Markov blankets and enclosed blankets-within-blankets arise throughout neocortex, creating the typical order and response characteristics of columnar and noncolumnar cortex.
引用
收藏
页数:17
相关论文
共 50 条
[41]   Common modular architecture across diverse cortical areas in early development [J].
Powell, Nathaniel J. ;
Hein, Bettina ;
Kong, Deyue ;
Elpelt, Jonas ;
Mulholland, Haleigh N. ;
Kaschube, Matthias ;
Smith, Gordon B. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2024, 121 (11)
[42]   Ash1l loss-of-function results in structural birth defects and altered cortical development [J].
Toolan, Kevin P. ;
McGrath, Brian T. ;
Brinkmeier, Michelle L. ;
Camper, Sally A. ;
Bielas, Stephanie L. .
BRAIN, 2024, 148 (01) :55-68
[43]   Free-energy minimization in joint agent-environment systems: A niche construction perspective [J].
Bruineberg, Jelle ;
Rietveld, Erik ;
Parr, Thomas ;
van Maanen, Leendert ;
Friston, Karl J. .
JOURNAL OF THEORETICAL BIOLOGY, 2018, 455 :161-178
[44]   Origin, Development, and Synaptogenesis of Cortical Interneurons [J].
Llorca, Alfredo ;
Deogracias, Ruben .
FRONTIERS IN NEUROSCIENCE, 2022, 16
[45]   Cortical development of the visual system of the rat [J].
Prevost, Francois ;
Lepore, Franco ;
Guillemot, Jean-Paul .
NEUROREPORT, 2010, 21 (01) :50-54
[46]   Self-supervision, normativity and the free energy principle [J].
Hohwy, Jakob .
SYNTHESE, 2021, 199 (1-2) :29-53
[47]   The free energy principle for action and perception: A mathematical review [J].
Buckley, Christopher L. ;
Kim, Chang Sub ;
McGregor, Simon ;
Seth, Anil K. .
JOURNAL OF MATHEMATICAL PSYCHOLOGY, 2017, 81 :55-79
[48]   A Minimum Free Energy Model of Motor Learning [J].
Mitchell, B. A. ;
Lauharatanahirun, N. ;
Garcia, J. O. ;
Wymbs, N. ;
Grafton, S. ;
Vettel, J. M. ;
Petzold, L. R. .
NEURAL COMPUTATION, 2019, 31 (10) :1945-1963
[49]   A computational model of the effect of gene misexpression on the development of cortical areas [J].
Giacomantonio, Clare E. ;
Goodhill, Geoffrey J. .
BIOLOGICAL CYBERNETICS, 2014, 108 (02) :203-221
[50]   Pinwheel crystallization in a dimension reduction model of visual cortical development [J].
Wolfgang Keil ;
Fred Wolf .
BMC Neuroscience, 10 (Suppl 1)