Preparation and Thermal Performance Study of a Novel Organic-Inorganic Eutectic Phase Change Material Based on Sodium Acetate Trihydrate and Polyethylene Glycol for Heat Recovery

被引:0
|
作者
Sun, Wanchun [1 ]
Xu, Xuyan [2 ]
Zhang, Tao [1 ]
Wu, Zhijiang [1 ]
Xu, Yansheng [1 ]
机构
[1] Shunde Polytech, Sch Energy & Automot Engn, Foshan 528300, Peoples R China
[2] Tsinghua Univ, Dept Ind Engn, Beijing 100084, Peoples R China
关键词
phase change material; sodium acetate trihydrate; polyethylene glycol; organic-inorganic eutectic PCM; expanded graphite; STORAGE; PCM; ENHANCEMENT; GRAPHITE; ENERGY;
D O I
10.3390/ma18010164
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A novel organic-inorganic eutectic phase change material (PCM) based on sodium acetate trihydrate (SAT) and polyethylene glycol (PEG) was developed to meet the needs of heat recovery and building heating. Three kinds of PEG with different molecular weights were selected to form organic-inorganic eutectic PCM with SAT. The thermal properties of three series of SAT-PEG eutectic PCM were compared based on DSC results, focusing on the impact of PEG addition on the phase change temperature and enthalpy of SAT, as well as the melting uniformity. The inhibitory effects of two nucleating agents on the supercooling of SAT-PEG eutectic PCM were systematically investigated. The effect of PEG on the crystallization behavior of SAT was studied using a metallographic microscope. To evaluate the thermal reliability of the SAT-PEG eutectic PCM, 600 cycles of melting-solidification experiments were conducted. Experimental results show that SAT can form eutectic PCMs with PEG200, PEG600, and PEG6000, respectively, with high enthalpy and excellent melting uniformity. The phase change temperature ranged from 55 degrees C to 60 degrees C and the enthalpy was as high as 250-280 kJ/kg. The results of the cooling curves show that 10 wt% tetrasodium pyrophosphate decahydrate (TPD) can reduce the supercooling degree to less than 1 degrees C. Significantly, all three series of SAT-PEG eutectic PCMs exhibit exceptional thermal reliability after 600 cycles of melting-solidification, with shifts in the phase change temperatures and enthalpies of less than 4%. XRD diffraction patterns showed that SAT, PEG, and TPD were physically mixed without a chemical reaction to form new substances. Microscopic images reveal that the addition of PEG preserves the original needle-shaped crystal morphology of SAT while reducing its crystal size. The rapid formation of small crystals can provide more nucleation points and expedite crystallization, thereby enhancing the heat release capabilities of the PCM.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Enhanced comprehensive performance of polyethylene glycol based phase change material with hybrid graphene nanomaterials for thermal energy storage
    Qi, Guo-Qiang
    Yang, Jie
    Bao, Rui-Ying
    Liu, Zheng-Ying
    Yang, Wei
    Xie, Bang-Hu
    Yang, Ming-Bo
    CARBON, 2015, 88 : 196 - 205
  • [42] Efficient Shape-Stabilized Phase-Change Material Based on Novel Mesoporous Carbon Microspheres as a Matrix for Polyethylene Glycol: Preparation and Thermal Properties
    Chen, Yan
    Liu, Yi
    Chen, Zhengshou
    Shi, Qian
    Gao, Junkai
    Ding, Han
    Tang, Xi
    Liu, Yu
    JOM, 2019, 71 (12) : 4547 - 4555
  • [43] Efficient Shape-Stabilized Phase-Change Material Based on Novel Mesoporous Carbon Microspheres as a Matrix for Polyethylene Glycol: Preparation and Thermal Properties
    Yan Chen
    Yi Liu
    Zhengshou Chen
    Qian Shi
    Junkai Gao
    Han Ding
    Xi Tang
    Yu Liu
    JOM, 2019, 71 : 4547 - 4555
  • [44] Thermal Performance Evaluation of a Phase Change Material Based Heat Sink : A Numerical Study
    Thomas, Jesto
    Srivatsa, P. V. S. S.
    Krishnan, Ramesh S.
    Baby, Rajesh
    1ST GLOBAL COLLOQUIUM ON RECENT ADVANCEMENTS AND EFFECTUAL RESEARCHES IN ENGINEERING, SCIENCE AND TECHNOLOGY - RAEREST 2016, 2016, 25 : 1182 - 1190
  • [45] Preparation of high-performance sodium acetate trihydrate-urea-expanded graphite mixed phase change material and its application performance in electric floor heating
    Huang R.
    Fang X.
    Ling Z.
    Zhang Z.
    Huagong Xuebao/CIESC Journal, 2020, 71 (06): : 2713 - 2723
  • [46] Experimental study of the thermal performance of a novel plate type heat exchanger with phase change material
    Lin, Wenzhu
    Zhang, Wenbo
    Ling, Ziye
    Fang, Xiaoming
    Zhang, Zhengguo
    APPLIED THERMAL ENGINEERING, 2020, 178
  • [47] Preparation and thermal properties of polyethylene glycol/expanded graphite as novel form-stable phase change material for indoor energy saving
    Yang, Yingni
    Pang, Yao
    Liu, Yi
    Guo, Hongwu
    MATERIALS LETTERS, 2018, 216 : 220 - 223
  • [48] Preparation and properties of phase change temperature-tuned composite phase change material based on sodium acetate trihydrate-urea/fumed silica for radiant floor heating system
    Fu, Wanwan
    Zou, Ting
    Liang, Xianghui
    Wang, Shuangfeng
    Gao, Xuenong
    Zhang, Zhengguo
    Fang, Yutang
    APPLIED THERMAL ENGINEERING, 2019, 162
  • [49] Novel Bio-Based Pomelo Peel Flour/Polyethylene Glycol Composite Phase Change Material for Thermal Energy Storage
    Zhang, Hai-Chen
    Kang, Ben-hao
    Sheng, Xinxin
    Lu, Xiang
    POLYMERS, 2019, 11 (12)
  • [50] Preparation and thermal performance of novel form-stable phase change materials based on polyethylene glycol (PEG)/hollow glass microsphere composites for thermal energy storage
    Yang, Yunyun
    Li, Wenmin
    Ren, Ying
    Cai, Xufu
    POLYMER BULLETIN, 2019, 76 (06) : 2711 - 2724