Deep Learning for Automated Assessment of Retinal Degeneration in Fundus Autofluorescence Images

被引:0
|
作者
Lo, Pei-An [1 ,2 ]
Pollalis, Dimitrios [1 ,2 ]
Chen, Yuning [1 ,2 ]
Chan, Anson [3 ]
Nguyen, Andrew [3 ]
Chong, Peter [4 ]
Humayun, Mark S. [1 ,2 ]
机构
[1] Univ Southern Calif, Ginsburg Inst Biomed Therapeut, Los Angeles, CA 90007 USA
[2] Univ Southern Calif, Keck Sch Med, Roski Eye Inst, Los Angeles, CA 90007 USA
[3] Univ Southern Calif, Viterbi Sch Engn, Los Angeles, CA 90007 USA
[4] Univ Southern Calif, Dornsife Coll Letters Arts & Sci, Los Angeles, CA 90007 USA
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
2407
引用
收藏
页数:3
相关论文
共 50 条
  • [31] Automated Glaucoma Detection in Retinal Fundus Images Using Machine Learning Models
    Hegde, Nagaratna P.
    Sireesha, V.
    Kumar, S. Vinay
    Madarapu, Sathwika
    Thupakula, Sai Varshini
    JOURNAL OF ELECTRICAL SYSTEMS, 2023, 19 (04) : 298 - 314
  • [32] Optical Coherence Tomography and Fundus Autofluorescence evaluation in an animal model of Retinal Degeneration
    Segura, F.
    Fernandez-Sanchez, L.
    Sanchez-Cano, A.
    Tamarit, J. M.
    Fuentes-Broto, L.
    Del Buey, M.
    Cuenca, N.
    Pinilla, I.
    ACTA OPHTHALMOLOGICA, 2015, 93
  • [33] Deep learning to predict future region of growth of geographic atrophy from fundus autofluorescence images
    Anegondi, Neha
    Salvi, Anish
    Cluceru, Julia
    Yang, Qi
    Ferrara, Daniela
    Rabe, Christina
    Gao, Simon S.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2023, 64 (08)
  • [34] Predicting sex from retinal fundus photographs using automated deep learning
    Korot, Edward
    Pontikos, Nikolas
    Liu, Xiaoxuan
    Wagner, Siegfried K.
    Faes, Livia
    Huemer, Josef
    Balaskas, Konstantinos
    Denniston, Alastair K.
    Khawaja, Anthony
    Keane, Pearse A.
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [35] Automated Glaucoma Screening from Retinal Fundus Image Using Deep Learning
    Phasuk, S.
    Poopresert, P.
    Yaemsuk, A.
    Suvannachart, P.
    Itthipanichpong, R.
    Chansangpetch, S.
    Manassakorn, A.
    Tantisevi, V
    Rojanapongpun, P.
    Tantibundhit, C.
    2019 41ST ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2019, : 904 - 907
  • [36] Predicting sex from retinal fundus photographs using automated deep learning
    Edward Korot
    Nikolas Pontikos
    Xiaoxuan Liu
    Siegfried K. Wagner
    Livia Faes
    Josef Huemer
    Konstantinos Balaskas
    Alastair K. Denniston
    Anthony Khawaja
    Pearse A. Keane
    Scientific Reports, 11
  • [37] Deep learning models for retinal vascular analysis from color fundus images
    Quiros, Jose David Vargas
    van Zeijl, Irene
    Liefers, Bart
    Vermeulen, Jeroen
    Luttikhuizen, Daniel
    Hamimida, Amal
    Krijnen, Annemiek
    van Garderen, Karin Alida
    Brussee, Corina
    Meester, Magda A.
    Klaver, Caroline C. W.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2024, 65 (07)
  • [38] Automatic detection of papilledema through fundus retinal images using deep learning
    Saba, Tanzila
    Akbar, Shahzad
    Kolivand, Hoshang
    Ali Bahaj, Saeed
    MICROSCOPY RESEARCH AND TECHNIQUE, 2021, 84 (12) : 3066 - 3077
  • [39] Suitability Classification of Retinal Fundus Images for Diabetic Retinopathy Using Deep Learning
    Pinedo-Diaz, German
    Ortega-Cisneros, Susana
    Moya-Sanchez, Eduardo Ulises
    Rivera, Jorge
    Mejia-Alvarez, Pedro
    Rodriguez-Navarrete, Francisco J.
    Sanchez, Abraham
    ELECTRONICS, 2022, 11 (16)
  • [40] Prediction of Causative Genes in Inherited Retinal Disorders from Fundus photography and Fundus Autofluorescence Imaging Utilising Deep Learning Techniques
    Fujinami-Yokokawa, Yu
    Ninomiya, Hideki
    Liu, Xiao
    Yang, Lizhu
    Pontikos, Nikolas
    Yoshitake, Kazutoshi
    Iwata, Takeshi
    Sato, Yasunori
    Hashimoto, Takeshi
    Miyata, Hiroaki
    Fujinami, Kaoru
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2021, 62 (08)