A physics-constrained deep learning treatment of runaway electron dynamics

被引:1
作者
McDevitt, Christopher J. [1 ]
Arnaud, Jonathan S. [1 ]
Tang, Xian-Zhu [2 ]
机构
[1] Univ Florida, Dept Mat Sci & Engn, Nucl Engn Program, Gainesville, FL 32611 USA
[2] Los Alamos Natl Lab, Theoret Div, Los Alamos, NM 87545 USA
关键词
NEURAL-NETWORKS; AVALANCHE; GENERATION; FRAMEWORK;
D O I
10.1063/5.0253370
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
An adjoint formulation leveraging a physics-informed neural network (PINN) is employed to advance the density moment of a runaway electron (RE) distribution forward in time. A distinguishing feature of this approach is that once the adjoint problem is solved, its solution can be used to project the RE density forward in time for an arbitrary initial momentum space distribution of REs. Furthermore, by employing a PINN, a parametric solution to the adjoint problem can be learned. Thus, once trained, this adjoint-deep learning framework is able to efficiently project the RE density forward in time across various plasma conditions while still including a fully kinetic description of RE dynamics. As an example application, the temporal evolution of the density of primary electrons is studied, with particular emphasis on evaluating the decay of a RE population when below threshold. Predictions from the adjoint-deep learning framework are found to be in good agreement with a traditional relativistic electron Fokker-Planck solver, for several distinct initial conditions, and across an array of physics parameters. Once trained, the PINN thus provides a means of generating RE density time histories with exceptionally low online execution time.
引用
收藏
页数:15
相关论文
共 49 条
  • [41] Resistive hose modes in tokamak runaway electron beams
    Sainterme, A. P.
    Sovinec, C. R.
    [J]. PHYSICS OF PLASMAS, 2024, 31 (01)
  • [42] Hot tail runaway electron generation in tokamak disruptions
    Smith, H. M.
    Verwichte, E.
    [J]. PHYSICS OF PLASMAS, 2008, 15 (07)
  • [43] SOKOLOV YA, 1979, JETP LETT+, V29, P218
  • [44] Surrogate modeling for fluid flows based on physics-constrained deep learning without simulation data
    Sun, Luning
    Gao, Han
    Pan, Shaowu
    Wang, Jian-Xun
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2020, 361
  • [45] THE EFFECT OF TRAPPED ELECTRONS ON THE WAVE-INDUCED CURRENT
    TAGUCHI, M
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1983, 52 (06) : 2035 - 2040
  • [46] Towards physics-informed deep learning for turbulent flow prediction
    Wang, Rui
    Kashinath, Karthik
    Mustafa, Mustafa
    Albert, Adrian
    Yu, Rose
    [J]. KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2020, : 1457 - 1466
  • [47] A comprehensive study of non-adaptive and residual-based adaptive sampling for physics-informed neural networks
    Wu, Chenxi
    Zhu, Min
    Tan, Qinyang
    Kartha, Yadhu
    Lu, Lu
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2023, 403
  • [48] A PSEUDOREVERSIBLE NORMALIZING FLOWFOR STOCHASTIC DYNAMICAL SYSTEMS WITH VARIOUSINITIAL DISTRIBUTIONS
    Yang, Minglei
    Wang, Pengjun
    Del-Castillo-Negrete, Diego
    Cao, Yanzhao
    Zhang, Guannan
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2024, 46 (04) : C508 - C533
  • [49] A backward Monte-Carlo method for time-dependent runaway electron simulations
    Zhang, Guannan
    del-Castillo-Negrete, Diego
    [J]. PHYSICS OF PLASMAS, 2017, 24 (09)