Improved Turbo Message Passing for Compressive Robust Principal Component Analysis: Algorithm Design and Asymptotic Analysis

被引:0
|
作者
He, Zhuohang [1 ]
Ma, Junjie [2 ]
Yuan, Xiaojun [1 ]
机构
[1] Univ Elect Sci & Technol China, Natl Key Lab Wireless Commun, Chengdu 611731, Peoples R China
[2] Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math & Sci Engn Comp, Beijing 100864, Peoples R China
基金
中国国家自然科学基金;
关键词
Sparse matrices; Bayes methods; Approximation algorithms; Principal component analysis; Message passing; Inference algorithms; Heuristic algorithms; Convergence; Face recognition; Noise measurement; Robust PCA; compressed sensing; approximate message passing; state evolution; low-rank matrix denoising; singular value thresholding; random matrix theory; phase transition; LOW-RANK; SIGNAL RECOVERY; PHASE-TRANSITIONS; SPARSE; DECOMPOSITION; DYNAMICS; GRAPHS; RISK; NORM;
D O I
10.1109/TIT.2024.3509476
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
- Compressive Robust Principal Component Analysis (CRPCA) naturally arises in various applications as a means to recover a low-rank matrix low-rank matrix L and a sparse matrix S from compressive measurements. In this paper, we approach the problem from a Bayesian inference perspective. We establish a probabilistic model for the problem and develop an improved turbo message passing (ITMP) algorithm based on the sum-product rule and the appropriate approximations. Additionally, we establish a state evolution framework to characterize the asymptotic behavior of the ITMP algorithm in the large-system limit. By analyzing the established state evolution, we further propose sufficient conditions for the global convergence of our algorithm. Our numerical results validate the theoretical results, demonstrating that the proposed asymptotic framework accurately characterize the dynamical behavior of the ITMP algorithm, and the phase transition curve specified by the sufficient condition agrees well with numerical simulations
引用
收藏
页码:1323 / 1361
页数:39
相关论文
共 50 条
  • [1] Turbo-Type Message Passing Algorithms for Compressed Robust Principal Component Analysis
    Xue, Zhipeng
    Yuan, Xiaojun
    Yang, Yang
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2018, 12 (06) : 1182 - 1196
  • [2] Compressive Online Robust Principal Component Analysis via n-l1 Minimization
    Huynh Van Luong
    Deligiannis, Nikos
    Seiler, Juergen
    Forchhammer, Soren
    Kaup, Andre
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (09) : 4314 - 4329
  • [3] Exactly Robust Kernel Principal Component Analysis
    Fan, Jicong
    Chow, Tommy W. S.
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2020, 31 (03) : 749 - 761
  • [4] COMPRESSIVE ONLINE ROBUST PRINCIPAL COMPONENT ANALYSIS WITH MULTIPLE PRIOR INFORMATION
    Huynh Van Luong
    Deligiannis, Nikos
    Seiler, Juergen
    Forchhammer, Soren
    Kaup, Andre
    2017 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP 2017), 2017, : 1260 - 1264
  • [5] Non-Negative Principal Component Analysis: Message Passing Algorithms and Sharp Asymptotics
    Montanari, Andrea
    Richard, Emile
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2016, 62 (03) : 1458 - 1484
  • [6] Bayesian compressive principal component analysis
    Ma, Di
    Chen, Songcan
    FRONTIERS OF COMPUTER SCIENCE, 2020, 14 (04)
  • [7] Bayesian compressive principal component analysis
    Di Ma
    Songcan Chen
    Frontiers of Computer Science, 2020, 14
  • [8] Nonlocal Weighted Robust Principal Component Analysis for Seismic Noise Attenuation
    Liu, Xingye
    Chen, Xiaohong
    Li, Jingye
    Chen, Yangkang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (02): : 1745 - 1756
  • [9] GENERALIZED APPROXIMATE MESSAGE PASSING FOR COSPARSE ANALYSIS COMPRESSIVE SENSING
    Borgerding, Mark
    Schniter, Philip
    Vila, Jeremy
    Rangan, Sundeep
    2015 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING (ICASSP), 2015, : 3756 - 3760
  • [10] An alternating minimization method for robust principal component analysis
    Shen, Yuan
    Xu, Hongyu
    Liu, Xin
    OPTIMIZATION METHODS & SOFTWARE, 2019, 34 (06) : 1251 - 1276