BERNSTEIN TYPE INEQUALITIES FOR SCHUR-SZEGO<spacing diaeresis> COMPOSITION OF POLYNOMIALS

被引:0
作者
Manzoor, Zahid [1 ]
Shah, W. M. [1 ]
机构
[1] Cent Univ Kashmir, Dept Math, Ganderbal 191201, Jammu & Kashmir, India
来源
JOURNAL OF MATHEMATICAL INEQUALITIES | 2024年 / 18卷 / 04期
关键词
and phrases; Polynomial; composition; Hadmard's product; convolution; inequalities; Bern-; stein; Schur-Szego<spacing diaeresis>;
D O I
10.7153/jmi-2024-18-76
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove some inequalities for Schur-Szego<spacing diaeresis> composition of polynomials, which inter-alia include classical Bernstein type inequalities for polynomials with restricted zeros.
引用
收藏
页码:1313 / 1326
页数:14
相关论文
共 8 条
  • [1] Ankeny N. C., Rivilin T. J., On a theorem of S. Bernstein, Pacific J. Math, 5, pp. 849-852, (1955)
  • [2] Aziz A., Dawood Q. M., Inequalities for a polynomial and its dervative, J. Approx. Theory, 54, pp. 306-313, (1988)
  • [3] Bernstein S., Sur la limitations des dérivées des polynômes, C. R. Math Acad. Sci. Paris, 190, pp. 338-314, (1930)
  • [4] Lax P. D., Proof of a conjecture of P. Erdös on the derivative of a polynomial, Bull. Amer. Math. Soc, 50, pp. 509-513, (1944)
  • [5] Marden M., Geometry of Polynomials, Math. Surveys, 3, (1949)
  • [6] Rahman Q. I., Schmeisser G., Analytic Theory of Polynomials, (2002)
  • [7] Gulzar S., Rather N. A., On a Composition preserving Inequalities between Polynomials, J. Cont. Math. Anal. (Armenian Academy Sciences), 53, pp. 21-26, (2018)
  • [8] Visser C., A Simple proof of certain inequalities concerning polynomials, Koninkl. Nederi. Akad. Wetensch. Proc, 47, pp. 276-281, (1945)