Learning tensor networks with tensor cross interpolation: New algorithms and libraries

被引:0
作者
Fernandez, Yuriel Nunez [1 ,2 ]
Ritter, Marc K. [3 ,4 ]
Jeannin, Matthieu [2 ]
Li, Jheng-Wei [2 ]
Kloss, Thomas [1 ]
Louvet, Thibaud [2 ]
Terasaki, Satoshi [6 ]
Parcollet, Olivier [5 ,7 ]
von Delft, Jan [3 ,4 ]
Shinaoka, Hiroshi [8 ]
Waintal, Xavier [2 ]
机构
[1] Univ Grenoble Alpes, CNRS, Neel Inst, F-38000 Grenoble, France
[2] Univ Grenoble Alpes, CEA, Grenoble INP, IRIG,Pheliqs, F-38000 Grenoble, France
[3] Ludwig Maximilians Univ Munchen, Arnold Sommerfeld Ctr Theoret Phys, Ctr Nanosci, D-80333 Munich, Germany
[4] Ludwig Maximilians Univ Munchen, Munich Ctr Quantum Sci & Technol, D-80333 Munich, Germany
[5] Flatiron Inst, Ctr Computat Quantum Phys, 162 5th Ave, New York, NY 10010 USA
[6] AtelierArith, Sendai, Miyagi 9800004, Japan
[7] Univ Paris Saclay, CNRS, CEA, Inst Phys theor, F-91191 Gif Sur Yvette, France
[8] Saitama Univ, Dept Phys, Saitama 3388570, Japan
来源
SCIPOST PHYSICS | 2025年 / 18卷 / 03期
基金
日本学术振兴会;
关键词
SCHUR COMPLEMENT; APPROXIMATION; MATRIX; QUASIOPTIMALITY;
D O I
10.21468/SciPostPhys.18.3.104
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The tensor cross interpolation (TCI) algorithm is a rank-revealing algorithm for decomposing low-rank, high-dimensional tensors into tensor trains/matrix product states (MPS). TCI learns a compact MPS representation of the entire object from a tiny training data set. Once obtained, the large existing MPS toolbox provides exponentially fast algorithms for performing a large set of operations. We discuss several improvements and variants of TCI. In particular, we show that replacing the cross interpolation by the partially rank-revealing LU decomposition yields a more stable and more flexible algorithm than the original algorithm. We also present two open source libraries, xfac in Python/C++ and TensorCrossInterpolation.jl in Julia, that implement these improved algorithms, and illustrate them on several applications. These include sign- problem-free integration in large dimension, the "superhigh-resolution" quantics representation of functions, the solution of partial differential equations, the superfast Fourier transform, the computation of partition functions, and the construction of matrix product operators.
引用
收藏
页数:74
相关论文
共 50 条
[41]   Efficient calculation of three-dimensional tensor networks [J].
Yang, Li-Ping ;
Fu, Y. F. ;
Xie, Z. Y. ;
Xiang, T. .
PHYSICAL REVIEW B, 2023, 107 (16)
[42]   Tensor Networks for Lattice Gauge Theories with Continuous Groups [J].
Tagliacozzo, L. ;
Celi, A. ;
Lewenstein, M. .
PHYSICAL REVIEW X, 2014, 4 (04)
[43]   Cyclical inverse interpolation: An approach for the inverse interpolation of black-box models using tensor product representations [J].
Csapo, Adam B. .
ASIAN JOURNAL OF CONTROL, 2021, 23 (03) :1301-1312
[44]   New Results on Classification Modeling of Noisy Tensor Datasets: A Fuzzy Support Tensor Machine Dual Model [J].
Sun, Tao ;
Sun, Xi-Ming .
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2022, 52 (08) :5188-5200
[45]   Low-rank Tensor Completion with a New Tensor Nuclear Norm Induced by Invertible Linear Transforms [J].
Lu, Canyi ;
Peng, Xi ;
Wei, Yunchao .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :5989-5997
[46]   Scalable and Sound Low-Rank Tensor Learning [J].
Cheng, Hao ;
Yu, Yaoliang ;
Zhang, Xinhua ;
Xing, Eric ;
Schuurmans, Dale .
ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 51, 2016, 51 :1114-1123
[47]   Learning Polynomial Transformations via Generalized Tensor Decompositions [J].
Chen, Sitan ;
Li, Jerry ;
Li, Yuanzhi ;
Zhang, Anru R. .
PROCEEDINGS OF THE 55TH ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING, STOC 2023, 2023, :1671-1684
[48]   Sample Efficient Learning of Factored Embeddings of Tensor Fields [J].
Heo, Taemin ;
Bajaj, Chandra .
INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 238, 2024, 238
[49]   Tensor network states and algorithms in the presence of a global SU(2) symmetry [J].
Singh, Sukhwinder ;
Vidal, Guifre .
PHYSICAL REVIEW B, 2012, 86 (19)
[50]   Personalized Coupled Tensor Decomposition for Multimodal Data Fusion: Uniqueness and Algorithms [J].
Borsoi, Ricardo A. ;
Usevich, Konstantin ;
Brie, David ;
Adali, Tulay .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2025, 73 :113-129