Learning tensor networks with tensor cross interpolation: New algorithms and libraries

被引:0
作者
Fernandez, Yuriel Nunez [1 ,2 ]
Ritter, Marc K. [3 ,4 ]
Jeannin, Matthieu [2 ]
Li, Jheng-Wei [2 ]
Kloss, Thomas [1 ]
Louvet, Thibaud [2 ]
Terasaki, Satoshi [6 ]
Parcollet, Olivier [5 ,7 ]
von Delft, Jan [3 ,4 ]
Shinaoka, Hiroshi [8 ]
Waintal, Xavier [2 ]
机构
[1] Univ Grenoble Alpes, CNRS, Neel Inst, F-38000 Grenoble, France
[2] Univ Grenoble Alpes, CEA, Grenoble INP, IRIG,Pheliqs, F-38000 Grenoble, France
[3] Ludwig Maximilians Univ Munchen, Arnold Sommerfeld Ctr Theoret Phys, Ctr Nanosci, D-80333 Munich, Germany
[4] Ludwig Maximilians Univ Munchen, Munich Ctr Quantum Sci & Technol, D-80333 Munich, Germany
[5] Flatiron Inst, Ctr Computat Quantum Phys, 162 5th Ave, New York, NY 10010 USA
[6] AtelierArith, Sendai, Miyagi 9800004, Japan
[7] Univ Paris Saclay, CNRS, CEA, Inst Phys theor, F-91191 Gif Sur Yvette, France
[8] Saitama Univ, Dept Phys, Saitama 3388570, Japan
来源
SCIPOST PHYSICS | 2025年 / 18卷 / 03期
基金
日本学术振兴会;
关键词
SCHUR COMPLEMENT; APPROXIMATION; MATRIX; QUASIOPTIMALITY;
D O I
10.21468/SciPostPhys.18.3.104
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The tensor cross interpolation (TCI) algorithm is a rank-revealing algorithm for decomposing low-rank, high-dimensional tensors into tensor trains/matrix product states (MPS). TCI learns a compact MPS representation of the entire object from a tiny training data set. Once obtained, the large existing MPS toolbox provides exponentially fast algorithms for performing a large set of operations. We discuss several improvements and variants of TCI. In particular, we show that replacing the cross interpolation by the partially rank-revealing LU decomposition yields a more stable and more flexible algorithm than the original algorithm. We also present two open source libraries, xfac in Python/C++ and TensorCrossInterpolation.jl in Julia, that implement these improved algorithms, and illustrate them on several applications. These include sign- problem-free integration in large dimension, the "superhigh-resolution" quantics representation of functions, the solution of partial differential equations, the superfast Fourier transform, the computation of partition functions, and the construction of matrix product operators.
引用
收藏
页数:74
相关论文
共 50 条
  • [21] Generalized Wishart Processes for Interpolation Over Diffusion Tensor Fields
    Vargas Cardona, Hernan Dario
    Alvarez, Mauricio A.
    Orozco, Alvaro A.
    ADVANCES IN VISUAL COMPUTING, PT II (ISVC 2015), 2015, 9475 : 499 - 508
  • [22] Tensor tree decomposition as a rank-reduction method for pre-stack interpolation
    Manenti, Rafael
    Sacchi, Mauricio D.
    GEOPHYSICAL PROSPECTING, 2023, 71 (08) : 1404 - 1419
  • [23] SVD-based algorithms for tensor wheel decomposition
    Wang, Mengyu
    Cui, Honghua
    Li, Hanyu
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2024, 50 (05)
  • [24] Developing iterative algorithms to solve Sylvester tensor equations
    Zhang, Xin-Fang
    Wang, Qing-Wen
    APPLIED MATHEMATICS AND COMPUTATION, 2021, 409
  • [25] Fast multiplicative algorithms for symmetric nonnegative tensor factorization
    Wang, Peitao
    He, Zhaoshui
    Yu, Rong
    Tan, Beihai
    Xie, Shengli
    Tan, Ji
    NEUROCOMPUTING, 2022, 500 : 255 - 267
  • [26] PARALLEL ALGORITHMS FOR COMPUTING THE TENSOR-TRAIN DECOMPOSITION
    Shi, Tianyi
    Ruth, Maximilian
    Townsend, Alex
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2023, 45 (03) : C101 - C130
  • [27] Efficient algorithms for computing the largest eigenvalue of a nonnegative tensor
    Zhou, Guanglu
    Qi, Liqun
    Wu, Soon-Yi
    FRONTIERS OF MATHEMATICS IN CHINA, 2013, 8 (01) : 155 - 168
  • [28] Numerical algorithms for solving discrete Lyapunov tensor equation
    Li, Tao
    Wang, Qing-Wen
    Duan, Xue-Feng
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 370
  • [29] Fast Alternating LS Algorithms for High Order CANDECOMP/PARAFAC Tensor Factorizations
    Phan, Anh-Huy
    Tichavsky, Petr
    Cichocki, Andrzej
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2013, 61 (19) : 4834 - 4846
  • [30] Tensor product approach to modelling epidemics on networks
    Dolgov, Sergey
    Savostyanov, Dmitry
    APPLIED MATHEMATICS AND COMPUTATION, 2024, 460