Learning tensor networks with tensor cross interpolation: New algorithms and libraries

被引:0
|
作者
Fernandez, Yuriel Nunez [1 ,2 ]
Ritter, Marc K. [3 ,4 ]
Jeannin, Matthieu [2 ]
Li, Jheng-Wei [2 ]
Kloss, Thomas [1 ]
Louvet, Thibaud [2 ]
Terasaki, Satoshi [6 ]
Parcollet, Olivier [5 ,7 ]
von Delft, Jan [3 ,4 ]
Shinaoka, Hiroshi [8 ]
Waintal, Xavier [2 ]
机构
[1] Univ Grenoble Alpes, CNRS, Neel Inst, F-38000 Grenoble, France
[2] Univ Grenoble Alpes, CEA, Grenoble INP, IRIG,Pheliqs, F-38000 Grenoble, France
[3] Ludwig Maximilians Univ Munchen, Arnold Sommerfeld Ctr Theoret Phys, Ctr Nanosci, D-80333 Munich, Germany
[4] Ludwig Maximilians Univ Munchen, Munich Ctr Quantum Sci & Technol, D-80333 Munich, Germany
[5] Flatiron Inst, Ctr Computat Quantum Phys, 162 5th Ave, New York, NY 10010 USA
[6] AtelierArith, Sendai, Miyagi 9800004, Japan
[7] Univ Paris Saclay, CNRS, CEA, Inst Phys theor, F-91191 Gif Sur Yvette, France
[8] Saitama Univ, Dept Phys, Saitama 3388570, Japan
来源
SCIPOST PHYSICS | 2025年 / 18卷 / 03期
基金
日本学术振兴会;
关键词
SCHUR COMPLEMENT; APPROXIMATION; MATRIX; QUASIOPTIMALITY;
D O I
10.21468/SciPostPhys.18.3.104
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The tensor cross interpolation (TCI) algorithm is a rank-revealing algorithm for decomposing low-rank, high-dimensional tensors into tensor trains/matrix product states (MPS). TCI learns a compact MPS representation of the entire object from a tiny training data set. Once obtained, the large existing MPS toolbox provides exponentially fast algorithms for performing a large set of operations. We discuss several improvements and variants of TCI. In particular, we show that replacing the cross interpolation by the partially rank-revealing LU decomposition yields a more stable and more flexible algorithm than the original algorithm. We also present two open source libraries, xfac in Python/C++ and TensorCrossInterpolation.jl in Julia, that implement these improved algorithms, and illustrate them on several applications. These include sign- problem-free integration in large dimension, the "superhigh-resolution" quantics representation of functions, the solution of partial differential equations, the superfast Fourier transform, the computation of partition functions, and the construction of matrix product operators.
引用
收藏
页数:74
相关论文
共 50 条
  • [1] Machine Learning With Tree Tensor Networks, CP Rank Constraints, and Tensor Dropout
    Chen, Hao
    Barthel, Thomas
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (12) : 7825 - 7832
  • [2] Learning Feynman Diagrams with Tensor Trains
    Fernandez, Yuriel Nunez
    Jeannin, Matthieu
    Dumitrescu, Philipp T.
    Kloss, Thomas
    Kaye, Jason
    Parcollet, Olivier
    Waintal, Xavier
    PHYSICAL REVIEW X, 2022, 12 (04)
  • [3] Quantics Tensor Cross Interpolation for High-Resolution Parsimonious Representations of Multivariate Functions
    Ritter, Marc K.
    Fernandez, Yuriel Nunez
    Wallerberger, Markus
    von Delft, Jan
    Shinaoka, Hiroshi
    Waintal, Xavier
    PHYSICAL REVIEW LETTERS, 2024, 132 (05)
  • [4] TENSOR-BASED ALGORITHMS FOR LEARNING MULTIDIMENSIONAL SEPARABLE DICTIONARIES
    Roemer, Florian
    Del Galdo, Giovanni
    Haardt, Martin
    2014 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2014,
  • [5] Approximation Algorithms for Tensor Clustering
    Jegelka, Stefanie
    Sra, Suvrit
    Banerjee, Arindam
    ALGORITHMIC LEARNING THEORY, PROCEEDINGS, 2009, 5809 : 368 - +
  • [6] Comb tensor networks
    Chepiga, Natalia
    White, Steven R.
    PHYSICAL REVIEW B, 2019, 99 (23)
  • [7] LEARNING EFFICIENT TENSOR REPRESENTATIONS WITH RING-STRUCTURED NETWORKS
    Zhao, Qibin
    Sugiyama, Masashi
    Yuan, Longhao
    Cichocki, Andrzej
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 8608 - 8612
  • [8] Learning with tree tensor networks: Complexity estimates and model selection
    Michel, Bertrand
    Nouy, Anthony
    BERNOULLI, 2022, 28 (02) : 910 - 936
  • [9] On algorithms for and computing with the tensor ring decomposition
    Mickelin, Oscar
    Karaman, Sertac
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2020, 27 (03)
  • [10] PARALLEL ALGORITHMS FOR TENSOR TRAIN ARITHMETIC
    Al Daas, Hussam
    Ballard, Grey
    Benner, Peter
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2022, 44 (01) : C25 - C53