Quantitative DCE Dynamics on Transformed MR Imaging Discriminates Clinically Significant Prostate Cancer

被引:0
作者
Wei, Zhouping [1 ]
Iluppangama, Malinda [1 ,2 ]
Qi, Jin [3 ]
Choi, Jung W. [4 ]
Yu, Alice [5 ]
Gage, Kenneth [4 ]
Chumbalkar, Vaibhav [6 ]
Dhilon, Jasreman [6 ]
Balaji, K. C. [7 ]
Venkataperumal, Satish [8 ]
Hernandez, David J. [9 ]
Park, Jong [10 ]
Yedjou, Clement [11 ]
Alo, Richard [11 ]
Gatenby, Robert A. [4 ]
Pow-Sang, Julio [5 ]
Balagurunanthan, Yoganand [1 ,4 ,5 ]
机构
[1] H Lee Moffitt Canc Ctr & Res Inst, Dept Machine Learning, Tampa, FL USA
[2] Univ South Florida Lib, Tampa, FL USA
[3] H Lee Moffitt Canc Ctr & Res Inst, Tampa, FL USA
[4] H Lee Moffitt Canc Ctr & Res Inst, Dept Diagnost & Intervent Radiol, Tampa, FL USA
[5] H Lee Moffitt Canc Ctr & Res Inst, Dept Genitourinary Canc, Tampa, FL USA
[6] H Lee Moffitt Canc Ctr & Res Inst, Dept Pathol, Tampa, FL USA
[7] Univ Florida, Dept Urol, Jacksonville, FL USA
[8] James A Haley Vet Hosp, Dept Radiol, Tampa, FL USA
[9] Univ South Florida Hlth, Dept Urol, Tampa, FL USA
[10] H Lee Moffitt Canc Ctr & Res Inst, Tampa, FL USA
[11] Florida A&M Univ, Coll Sci & Technol, Dept Biol, Tallahassee, FL USA
关键词
MRI; prostate cancer; machine learning; radiomics; habitats; DCE; PI-RADS; RADIOMICS; FEATURES; REPRODUCIBILITY; ACQUISITION; TISSUE; MODEL;
D O I
10.1177/10732748241298539
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Dynamic contrast enhancement (DCE) imaging is a valuable sequence of multiparametric magnetic resonance imaging (mpMRI). A DCE sequence enhances the vasculature and complements T2-weighted (T2W) and Diffusion-weighted imaging (DWI), allowing early detection of prostate cancer. However, DCE assessment has remained primarily qualitative. The study proposes quantifying DCE characteristics (T1W sequences) using six time-dependent metrics computed on feature transformations (306 radiomic features) of abnormal image regions observed over time. We applied our methodology to prostate cancer patients with the DCE MRI images (n = 25) who underwent prostatectomy with confirmed pathological assessment of the disease using Gleason Score. Regions of abnormality were assessed on the T2W MRI, guided using the whole mount pathology. Preliminary analysis finds over six temporal DCE imaging features obtained on different transformations on the imaging regions showed significant differences compared to the indolent counterpart (P <= 0.05, q <= 0.01). We find classifier models using logistic regression formed on DCE features after feature-based transformation (Centre of Mass) had an AUC of 0.89-0.94. While using mean feature-based transformation, the AUC was in the range of 0.71-0.76, estimated using the 0.632 bootstrap cross-validation method and after applying sample balancing using the synthetic minority oversampling technique (SMOTE). Our study finds, radiomic transformation of DCE images (T1 sequences) provides better signal standardization. Their temporal characteristics allow improved discrimination of aggressive disease.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Magnetic Resonance Imaging-Based Predictive Models for Clinically Significant Prostate Cancer: A Systematic Review
    Triquell, Marina
    Campistol, Miriam
    Celma, Ana
    Regis, Lucas
    Cuadras, Merce
    Planas, Jacques
    Trilla, Enrique
    Morote, Juan
    CANCERS, 2022, 14 (19)
  • [42] Development and Validation of a Radiomics Nomogram for Predicting Clinically Significant Prostate Cancer in PI-RADS 3 Lesions
    Li, Tianping
    Sun, Linna
    Li, Qinghe
    Luo, Xunrong
    Luo, Mingfang
    Xie, Haizhu
    Wang, Peiyuan
    FRONTIERS IN ONCOLOGY, 2022, 11
  • [43] Detection of clinically significant prostate cancer with 18F-DCFPyL PET/multiparametric MR
    Metser, Ur
    Ortega, Claudia
    Perlis, Nathan
    Lechtman, Eli
    Berlin, Alejandro
    Anconina, Reut
    Eshet, Yael
    Chan, Rosanna
    Veit-Haibach, Patrick
    van der Kwast, Theodorus H.
    Liu, Amy
    Ghai, Sangeet
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2021, 48 (11) : 3702 - 3711
  • [44] Prediction of clinically significant prostate cancer with a multimodal MRI-based radiomics nomogram
    Jing, Guodong
    Xing, Pengyi
    Li, Zhihui
    Ma, Xiaolu
    Lu, Haidi
    Shao, Chengwei
    Lu, Yong
    Lu, Jianping
    Shen, Fu
    FRONTIERS IN ONCOLOGY, 2022, 12
  • [45] Machine learning for the identification of clinically significant prostate cancer on MRI: a meta-analysis
    Cuocolo, Renato
    Cipullo, Maria Brunella
    Stanzione, Arnaldo
    Romeo, Valeria
    Green, Roberta
    Cantoni, Valeria
    Ponsiglione, Andrea
    Ugga, Lorenzo
    Imbriaco, Massimo
    EUROPEAN RADIOLOGY, 2020, 30 (12) : 6877 - 6887
  • [46] Detection of clinically significant prostate cancer with 18F-DCFPyL PET/multiparametric MR
    Ur Metser
    Claudia Ortega
    Nathan Perlis
    Eli Lechtman
    Alejandro Berlin
    Reut Anconina
    Yael Eshet
    Rosanna Chan
    Patrick Veit-Haibach
    Theodorus H. van der Kwast
    Amy Liu
    Sangeet Ghai
    European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48 : 3702 - 3711
  • [47] Comparative performance of fully-automated and semi-automated artificial intelligence methods for the detection of clinically significant prostate cancer on MRI: a systematic review
    Sushentsev, Nikita
    Da Silva, Nadia Moreira
    Yeung, Michael
    Barrett, Tristan
    Sala, Evis
    Roberts, Michael
    Rundo, Leonardo
    INSIGHTS INTO IMAGING, 2022, 13 (01)
  • [48] The Role of Radiomics in the Prediction of Clinically Significant Prostate Cancer in the PI-RADS v2 and v2.1 Era: A Systematic Review
    Antolin, Andreu
    Roson, Nuria
    Mast, Richard
    Arce, Javier
    Almodovar, Ramon
    Cortada, Roger
    Maceda, Almudena
    Escobar, Manuel
    Trilla, Enrique
    Morote, Juan
    CANCERS, 2024, 16 (17)
  • [49] Avoiding Unnecessary Systematic Biopsy in Clinically Significant Prostate Cancer: Comparison Between MRI-Based Radiomics Model and PI-RADS Category
    Cheng, Xueqing
    Chen, Yuntian
    Xu, Hui
    Ye, Lei
    Tong, Shun
    Li, Haixia
    Zhang, Tianjing
    Tian, Song
    Qi, Jin
    Zeng, Hao
    Yao, Jin
    Song, Bin
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2023, 57 (02) : 578 - 586
  • [50] Diagnosis of clinically significant prostate cancer after negative multiparametric magnetic resonance imaging
    Zattoni, Fabio
    Morlacco, Alessandro
    Soligo, Matteo
    Mancini, Mariangela
    Leone, Nicolo
    Zecchini, Giovanni
    Reitano, Giuseppe
    Bednarova, Iliana
    Lacognata, Carmelo Salvino
    Lauro, Alberto
    Zanovello, Nicola
    Novara, Giacomo
    dal Moro, Fabrizio
    CENTRAL EUROPEAN JOURNAL OF UROLOGY, 2022, 75 (03) : 277 - 283