Rapidly self-healing, highly conductive, stretchable, body-attachable hydrogel sensor for soft electronics

被引:2
|
作者
Khadka, Ashwin [1 ]
Pradhan, Shrayas [1 ]
Samuel, Edmund [2 ]
Joshi, Bhavana [1 ]
Gao, Hao [1 ]
Aldalbahi, Ali [3 ]
Periyasami, Govindasami [3 ]
Lee, Hae-Seok [2 ]
Yoon, Sam S. [1 ]
机构
[1] Korea Univ, Sch Mech Engn, Seoul 02841, South Korea
[2] Korea Univ, Grad Sch Energy & Environm, KU KIST Green Sch, Energy Environm Policy & Technol, Seoul 02841, South Korea
[3] King Saud Univ, Coll Sci, Dept Chem, Riyadh 11451, Saudi Arabia
基金
新加坡国家研究基金会;
关键词
Self-healing; Hydrogel; PVA; Soft electronics;
D O I
10.1016/j.coco.2024.102158
中图分类号
TB33 [复合材料];
学科分类号
摘要
Self-healing hydrogels are widely used in body-attachable sensors because they are stretchable, skin-friendly, highly sensitive, and mechanically strong. We developed a polyvinyl alcohol/poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate) (PVA/PEDOT:PSS) hydrogel that responds rapidly and self-heals following external mechanical damage for use in body-attachable-sensor applications. The addition of ethylenediamine during hydrogel synthesis enhanced the crosslinking reaction and facilitated gelation. The hydrogel demonstrated a self-healing efficiency of 80 % and a gauge factor of 0.67 when strained in the 0-70 % range. The selfhealing sensor exhibited response and recovery times of less than 0.25 s, with a self-healing time of less than 5 min. The self-healing sensor was tested for bodily motions, such as finger pressure, bending, voice vibration, severe stretching at 70 % strain, and stretching for 1000 continuous cycles.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] High-Resolution Patterning of Liquid Metal on Hydrogel for Flexible, Stretchable, and Self-Healing Electronics
    Xu, Chengtao
    Ma, Biao
    Yuan, Shuai
    Zhao, Chao
    Liu, Hong
    ADVANCED ELECTRONIC MATERIALS, 2020, 6 (01)
  • [42] A reversible and highly conductive adhesive: towards self-healing and recyclable flexible electronics
    Yan, Qiming
    Zhou, Meng
    Fu, Heqing
    JOURNAL OF MATERIALS CHEMISTRY C, 2020, 8 (23) : 7772 - 7785
  • [43] A highly stretchable autonomous self-healing elastomer
    Li C.-H.
    Wang C.
    Keplinger C.
    Zuo J.-L.
    Jin L.
    Sun Y.
    Zheng P.
    Cao Y.
    Lissel F.
    Linder C.
    You X.-Z.
    Bao Z.
    Nature Chemistry, 2016, 8 (6) : 618 - 624
  • [44] Highly Stretchable and Biocompatible Liquid Metal-Elastomer Conductors for Self-Healing Electronics
    Mou, Lei
    Qi, Jie
    Tang, Lixue
    Dong, Ruihua
    Xia, Yong
    Gao, Yuan
    Jiang, Xingyu
    SMALL, 2020, 16 (51)
  • [45] A highly stretchable autonomous self-healing elastomer
    Li, Cheng-Hui
    Wang, Chao
    Keplinger, Christoph
    Zuo, Jing-Lin
    Jin, Lihua
    Sun, Yang
    Zheng, Peng
    Cao, Yi
    Lissel, Franziska
    Linder, Christian
    You, Xiao-Zeng
    Bao, Zhenan
    NATURE CHEMISTRY, 2016, 8 (06) : 619 - 625
  • [46] Ultra elastic, stretchable, self-healing conductive hydrogels with tunable optical properties for highly sensitive soft electronic sensors
    Wu, Meng
    Chen, Jingsi
    Ma, Yuhao
    Yan, Bin
    Pan, Mingfei
    Peng, Qiongyao
    Wang, Wenda
    Han, Linbo
    Liu, Jifang
    Zeng, Hongbo
    JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (46) : 24718 - 24733
  • [47] Dual Conductive Network Hydrogel for a Highly Conductive, Self-Healing, Anti-Freezing, and Non-Drying Strain Sensor
    Han, Songjia
    Liu, Chunrui
    Lin, Xiaoyun
    Zheng, Jiwen
    Wu, Jin
    Liu, Chuan
    ACS APPLIED POLYMER MATERIALS, 2020, 2 (02) : 996 - 1005
  • [48] Melanin-Inspired Conductive Hydrogel Sensors with Ultrahigh Stretchable, Self-Healing, and Photothermal Capacities
    Zhang, Xiaoling
    Peng, Yinjie
    Wang, Xiaoyu
    Ran, Rong
    ACS APPLIED POLYMER MATERIALS, 2021, 3 (04) : 1899 - 1911
  • [49] SELF-HEALING, HIGHLY-STRETCHABLE, TRANSPARENT, AND ION-CONDUCTING HYDROGEL ELECTROLYTE-BASED MICROSUPERCAPACITOR FOR FLEXIBLE ELECTRONICS
    He, Peisheng
    Long, Yu
    Xu, Renxiao
    Lan, Guangchen
    Lin, Liwei
    2020 33RD IEEE INTERNATIONAL CONFERENCE ON MICRO ELECTRO MECHANICAL SYSTEMS (MEMS 2020), 2020, : 239 - 242
  • [50] A Highly Stretchable, Tough, Self-Healing, and Thermoprocessable Polyacrylamide-Chitosan Supramolecular Hydrogel
    Dutta, Agniva
    Maity, Supriya
    Das, Rajat K.
    MACROMOLECULAR MATERIALS AND ENGINEERING, 2018, 303 (12)