Fluid-structure interaction with porous media: The Beaver-Joseph condition in the strong sense

被引:0
作者
Binz, Tim [1 ]
Hieber, Matthias [2 ]
Roy, Arnab [3 ,4 ]
机构
[1] Princeton Univ, Program Appl & Computat Math, Fine Hall,Washington Rd, Princeton, NJ 08544 USA
[2] Tech Univ Darmstadt, Schlossgartenstr 7, D-64289 Darmstadt, Germany
[3] Basque Ctr Appl Math BCAM, Alameda Mazarredo 14, Bilbao 48009, Spain
[4] Basque Fdn Sci, Ikerbasque, Plaza Euskadi 5, Bilbao 48009, Spain
关键词
Fluid structure; Porous material; Beaver-Joseph and Beaver-Joseph-Saffman interface conditions; Navier-Stokes-Darcy-system; Critical spaces; PARABOLIC EQUATIONS; BOUNDARY-CONDITIONS; STOKES; INTERPOLATION; LP; PERTURBATION; SPACES;
D O I
10.1016/j.jde.2025.01.042
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article considers fluid structure interaction describing the motion of a fluid contained in a porous medium. The fluid is modeled by Navier-Stokes equations and the coupling between fluid and the porous medium is described by the classical Beaver-Joseph or the Beaver-Joseph-Saffman interface condition. In contrast to previous work these conditions are investigated for the first time in the strong sense and it is shown that the coupled system admits a unique, global strong solution in critical spaces provided the data are small enough. Furthermore, a Serrin-type blow-up criterium is developed and higher regularity estimates at the interface are established, which say that the solution is even analytic provided the forces are so. (c) 2025 Published by Elsevier Inc.
引用
收藏
页码:660 / 689
页数:30
相关论文
共 42 条
  • [11] Boyer F., 2013, APPL MATH SCI, V183, DOI DOI 10.1007/978-1-4614-5975-0
  • [12] Cannone M, 2004, HANDBOOK OF MATHEMATICAL FLUID DYNAMICS, VOL 3, P161
  • [13] Cannone M, 1997, REV MAT IBEROAM, V13, P515
  • [14] THE BEAVERS-JOSEPH INTERFACE BOUNDARY CONDITION IS WELL APPROXIMATED BY THE BEAVERS--JOSEPH--SAFFMAN--JONES INTERFACE BOUNDARY CONDITION
    Cao, Y. I. N. I. N. G.
    Wang, X. I. A. O. M. I. N. G.
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 2022, 82 (03) : 1020 - 1044
  • [15] Cao YZ, 2010, COMMUN MATH SCI, V8, P1
  • [16] Denk R, 2003, MEM AM MATH SOC, V166, P1
  • [17] Discacciati M, 2009, REV MAT COMPLUT, V22, P315
  • [18] Engel K.-J., 2000, ONE PARAMETER SEMIGR
  • [19] Simultaneous approximation in Lebesgue and Sobolev norms via eigenspaces
    Fefferman, Charles L.
    Hajduk, Karol W.
    Robinson, James C.
    [J]. PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2022, 125 (04) : 759 - 777
  • [20] ON THE NAVIER-STOKES INITIAL VALUE PROBLEM .1.
    FUJITA, H
    KATO, T
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1964, 16 (04) : 269 - 315