Fluid-structure interaction with porous media: The Beaver-Joseph condition in the strong sense

被引:0
作者
Binz, Tim [1 ]
Hieber, Matthias [2 ]
Roy, Arnab [3 ,4 ]
机构
[1] Princeton Univ, Program Appl & Computat Math, Fine Hall,Washington Rd, Princeton, NJ 08544 USA
[2] Tech Univ Darmstadt, Schlossgartenstr 7, D-64289 Darmstadt, Germany
[3] Basque Ctr Appl Math BCAM, Alameda Mazarredo 14, Bilbao 48009, Spain
[4] Basque Fdn Sci, Ikerbasque, Plaza Euskadi 5, Bilbao 48009, Spain
关键词
Fluid structure; Porous material; Beaver-Joseph and Beaver-Joseph-Saffman interface conditions; Navier-Stokes-Darcy-system; Critical spaces; PARABOLIC EQUATIONS; BOUNDARY-CONDITIONS; STOKES; INTERPOLATION; LP; PERTURBATION; SPACES;
D O I
10.1016/j.jde.2025.01.042
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article considers fluid structure interaction describing the motion of a fluid contained in a porous medium. The fluid is modeled by Navier-Stokes equations and the coupling between fluid and the porous medium is described by the classical Beaver-Joseph or the Beaver-Joseph-Saffman interface condition. In contrast to previous work these conditions are investigated for the first time in the strong sense and it is shown that the coupled system admits a unique, global strong solution in critical spaces provided the data are small enough. Furthermore, a Serrin-type blow-up criterium is developed and higher regularity estimates at the interface are established, which say that the solution is even analytic provided the forces are so. (c) 2025 Published by Elsevier Inc.
引用
收藏
页码:660 / 689
页数:30
相关论文
共 42 条
  • [1] Perturbation of analytic semigroups and applications to partial differential equations
    Adler, Martin
    Bombieri, Miriam
    Engel, Klaus-Jochen
    [J]. JOURNAL OF EVOLUTION EQUATIONS, 2017, 17 (04) : 1183 - 1208
  • [2] Amann H., 2019, Monographs in Mathematics, V106, DOI DOI 10.1007/978-3-030-11763-4
  • [3] Amann H., 1995, Linear and Quasilinear Parabolic Problems, V1
  • [5] PARABOLIC EQUATIONS FOR CURVES ON SURFACES .1. CURVES WITH P-INTEGRABLE CURVATURE
    ANGENENT, S
    [J]. ANNALS OF MATHEMATICS, 1990, 132 (03) : 451 - 483
  • [6] Arendt W, 2011, MG MATH, V96, pIX, DOI 10.1007/978-3-0348-0087-7
  • [7] Coupling Biot and Navier-Stokes equations for modelling fluid-poroelastic media interaction
    Badia, Santiago
    Quaini, Annalisa
    Quarteroni, Alfio
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (21) : 7986 - 8014
  • [8] BOUNDARY CONDITIONS AT A NATURALLY PERMEABLE WALL
    BEAVERS, GS
    JOSEPH, DD
    [J]. JOURNAL OF FLUID MECHANICS, 1967, 30 : 197 - &
  • [9] MULTILAYERED POROELASTICITY INTERACTING WITH STOKES FLOW
    Bociu, Lorena
    Canic, Suncica
    Muha, Boris
    Webster, Justin T.
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2021, 53 (06) : 6243 - 6279
  • [10] Analysis of Nonlinear Poro-Elastic and Poro-Visco-Elastic Models
    Bociu, Lorena
    Guidoboni, Giovanna
    Sacco, Riccardo
    Webster, Justin T.
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2016, 222 (03) : 1445 - 1519