共 31 条
Structure connectivity of folded crossed cubes based on faulty stars
被引:0
|作者:
Guo, Huimei
[1
]
Hao, Rong-Xia
[1
]
Mamut, Aygul
[2
]
Chang, Jou-Ming
[3
]
Wu, Jie
[4
]
机构:
[1] Beijing Jiaotong Univ, Sch Math & Stat, Beijing 100044, Peoples R China
[2] Xinjiang Univ, Sch Math & Syst Sci, Urumqi 830046, Peoples R China
[3] Natl Taipei Univ Business, Inst Informat & Decis Sci, ,, Taipei 10051, Taiwan
[4] Temple Univ, Dept Comp & Informat Sci, Philadelphia, PA 19122 USA
基金:
中国国家自然科学基金;
关键词:
Folded crossed cubes;
Structure connectivity;
Interconnection network;
SUBSTRUCTURE CONNECTIVITY;
TOLERANCE;
HYPERCUBE;
D O I:
10.1007/s12190-025-02372-9
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
Large parallel computer systems bounding experience faults are inevitable due to their scale sizes, which poses serious reliability challenges for interconnection networks. Two new indicators were recently introduced to assess the stability of these networks more accurately, including structure connectivity and substructure connectivity. These parameters are crucial in measuring fault tolerance during chip failures. Let H be a certain graph pattern, and F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}$$\end{document} be a set of subgraphs in a graph G. Then, F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}$$\end{document} is called an H-structure cut (resp. H-substructure cut) of G if every element of F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}$$\end{document} is isomorphic to H (resp. isomorphic to a connected subgraph of H) when G-F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G-\mathcal {F}$$\end{document} is disconnected. The H-structure connectivity kappa(G;H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa (G; H)$$\end{document} (resp. H-substructure connectivity kappa s(G;H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa <^>s(G; H)$$\end{document}) is the minimum cardinality over all H-structure cuts (resp. H-substructure cuts). Recently, Ba, in her Ph.D. dissertation, posted the result of K1,r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{1,r}$$\end{document}-(sub)structure connectivity of FCQn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$FCQ_n$$\end{document} for 1 <= r <= n2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le r\le \frac{n}{2}$$\end{document}, where FCQn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$FCQ_n$$\end{document} denotes the n-dimensional folded crossed cube, which is a variant of the hypercube called crossed cube by enhancing a folded link between any two complementary vertices. In this paper, to supplement the completeness of the findings of this study, we successfully determine the K1,r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{1,r}$$\end{document}-(sub)structure connectivity of FCQn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$FCQ_n$$\end{document} for n2+1 <= r <= n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{n}{2}+1\le r\le n$$\end{document}, which solves the open problem proposed by Ba.
引用
收藏
页码:3803 / 3832
页数:30
相关论文