Structure connectivity of folded crossed cubes based on faulty stars

被引:0
|
作者
Guo, Huimei [1 ]
Hao, Rong-Xia [1 ]
Mamut, Aygul [2 ]
Chang, Jou-Ming [3 ]
Wu, Jie [4 ]
机构
[1] Beijing Jiaotong Univ, Sch Math & Stat, Beijing 100044, Peoples R China
[2] Xinjiang Univ, Sch Math & Syst Sci, Urumqi 830046, Peoples R China
[3] Natl Taipei Univ Business, Inst Informat & Decis Sci, ,, Taipei 10051, Taiwan
[4] Temple Univ, Dept Comp & Informat Sci, Philadelphia, PA 19122 USA
基金
中国国家自然科学基金;
关键词
Folded crossed cubes; Structure connectivity; Interconnection network; SUBSTRUCTURE CONNECTIVITY; TOLERANCE; HYPERCUBE;
D O I
10.1007/s12190-025-02372-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Large parallel computer systems bounding experience faults are inevitable due to their scale sizes, which poses serious reliability challenges for interconnection networks. Two new indicators were recently introduced to assess the stability of these networks more accurately, including structure connectivity and substructure connectivity. These parameters are crucial in measuring fault tolerance during chip failures. Let H be a certain graph pattern, and F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}$$\end{document} be a set of subgraphs in a graph G. Then, F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}$$\end{document} is called an H-structure cut (resp. H-substructure cut) of G if every element of F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}$$\end{document} is isomorphic to H (resp. isomorphic to a connected subgraph of H) when G-F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G-\mathcal {F}$$\end{document} is disconnected. The H-structure connectivity kappa(G;H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa (G; H)$$\end{document} (resp. H-substructure connectivity kappa s(G;H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa <^>s(G; H)$$\end{document}) is the minimum cardinality over all H-structure cuts (resp. H-substructure cuts). Recently, Ba, in her Ph.D. dissertation, posted the result of K1,r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{1,r}$$\end{document}-(sub)structure connectivity of FCQn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$FCQ_n$$\end{document} for 1 <= r <= n2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le r\le \frac{n}{2}$$\end{document}, where FCQn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$FCQ_n$$\end{document} denotes the n-dimensional folded crossed cube, which is a variant of the hypercube called crossed cube by enhancing a folded link between any two complementary vertices. In this paper, to supplement the completeness of the findings of this study, we successfully determine the K1,r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{1,r}$$\end{document}-(sub)structure connectivity of FCQn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$FCQ_n$$\end{document} for n2+1 <= r <= n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{n}{2}+1\le r\le n$$\end{document}, which solves the open problem proposed by Ba.
引用
收藏
页码:3803 / 3832
页数:30
相关论文
共 31 条
  • [21] The h-faulty-block connectivity of k-ary n-cubes
    Hua, Xiaohui
    Zhao, Qin
    COMPUTER JOURNAL, 2024, 68 (02) : 126 - 134
  • [22] Hyper star structure connectivity of hierarchical folded cubic networks
    Guo, Huimei
    Hao, Rong-Xia
    Chang, Jou-Ming
    Kwon, Young Soo
    JOURNAL OF SUPERCOMPUTING, 2024, 80 (10) : 14224 - 14241
  • [23] The Path-Structure Connectivity of Augmented k-ary n-cubes
    Ba, Lina
    Zhang, Yaxian
    Zhang, Heping
    COMPUTER JOURNAL, 2023, 66 (12) : 3119 - 3128
  • [24] Fault-tolerability analysis of hypercubes based on 3-component path-structure connectivity
    Zhu, Bo
    Zhang, Shumin
    Chang, Jou-Ming
    Zou, Jinyu
    DISCRETE APPLIED MATHEMATICS, 2025, 370 : 111 - 123
  • [25] A novel edge connectivity based on edge partition for hypercube and folded hypercube
    Chen, Meirun
    Habib, Michel
    Lin, Cheng-Kuan
    APPLIED MATHEMATICS AND COMPUTATION, 2024, 470
  • [26] An exchanged folded hypercube-based topology structure for interconnection networks
    Qi, Heng
    Li, Yang
    Li, Keqiu
    Stojmenovic, Milos
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2015, 27 (16) : 4194 - 4210
  • [27] Fault tolerance analysis for hamming graphs with large-scale faulty links based on k-component edge-connectivity
    Yang, Yayu
    Zhang, Mingzu
    Meng, Jixiang
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2023, 173 : 107 - 114
  • [28] Hamiltonian Cycle and Path Embeddings in k-Ary n-Cubes Based on Structure Faults
    Lv, Yali
    Lin, Cheng-Kuan
    Fan, Jianxi
    COMPUTER JOURNAL, 2017, 60 (02) : 159 - 179
  • [29] Reliability analyses of regular graphs based on edge-structure connectivity
    Wang, Na
    Meng, Jixiang
    Tian, Yingzhi
    DISCRETE APPLIED MATHEMATICS, 2024, 356 : 329 - 342
  • [30] An $O(\log _3N)$ Algorithm for Reliability Assessment of 3-Ary $n$-Cubes Based on $h$-Extra Edge Connectivity
    Xu, Liqiong
    Zhou, Shuming
    Hsieh, Sun-Yuan
    IEEE TRANSACTIONS ON RELIABILITY, 2022, 71 (03) : 1230 - 1240