Time-space sampled-data control for semi-Markov reaction-diffusion neural networks: Adopting multiple event-triggered protocols

被引:1
作者
Wei, Wanying [1 ]
Zhang, Bin [1 ]
Cheng, Jun [1 ]
Cao, Jinde [2 ]
Zhang, Dan [3 ]
Yan, Huaicheng [4 ]
机构
[1] Guangxi Normal Univ, Ctr Appl Math Guangxi, Sch Math & Stat, Guilin 541006, Peoples R China
[2] Southeast Univ, Sch Math, Nanjing 211189, Peoples R China
[3] Zhejiang Univ Technol, Res Ctr Automat & Artificial Intelligence, Hangzhou 310014, Peoples R China
[4] East China Univ Sci & Technol, Shanghai 200237, Peoples R China
关键词
Multiple event-triggered protocol; Reaction-diffusion neural networks; Semi-Markov process; JUMP SYSTEMS; SYNCHRONIZATION;
D O I
10.1016/j.ins.2024.121779
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This study focuses on time-space sampled-data control for semi-Markov reaction-diffusion neural networks (SMRDNNs) utilizing event-triggered protocols (ETPs) and a multiasynchronous strategy. To mitigate data confusion caused by significant transmission delays, a novel packet loss scheduling approach is developed, leading to the formation of a unified SMRDNN model. A hidden semi-Markov model is adopted to address asynchronous dynamics among subsystems, ETPs, and the controller. By simultaneously exploring multiple ETPs in the temporal dimension and sampling mechanisms in the spatial dimension, a new space-time sampled-data control method is devised. This strategy effectively reduces communication resource usage while maintaining control performance. Finally, an illustrative example is provided to demonstrate the effectiveness and superiority of the attained theoretical results.
引用
收藏
页数:17
相关论文
共 25 条
[1]   30-GHz Co-designed Low-Noise Amplifier and Antenna-on-Chip for Wireless Applications [J].
Chen, Zhe ;
Liu, Qiang ;
Smolders, Bart ;
Baltus, Peter ;
Gao, Hao .
2019 IEEE INTERNATIONAL SYMPOSIUM ON RADIO-FREQUENCY INTEGRATION TECHNOLOGY (RFIT2019), 2019,
[2]   Space-Time Sampled-Data Control for Memristor-Based Reaction-Diffusion Neural Networks With Nonhomogeneous Sojourn Probabilities [J].
Cheng, Jun ;
Liu, Na ;
Rutkowski, Leszek ;
Cao, Jinde ;
Yan, Huaicheng ;
Hua, Liang .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2025, 72 (03) :1452-1461
[3]   Protocol-based SMC for singularly perturbed switching systems with sojourn probabilities [J].
Cheng, Jun ;
Xu, Jiangming ;
Park, Ju H. ;
Yan, Huaicheng ;
Zhang, Dan .
AUTOMATICA, 2024, 161
[4]   Novel event-triggered protocol to sliding mode control for singular semi-Markov jump systems [J].
Cheng, Jun ;
Xie, Lifei ;
Zhang, Dan ;
Yan, Huaicheng .
AUTOMATICA, 2023, 151
[5]   Protocol-Based Output-Feedback Control for Semi-Markov Jump Systems [J].
Cheng, Jun ;
Xie, Lifei ;
Park, Ju H. ;
Yan, Huaicheng .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2022, 67 (08) :4346-4353
[6]   Protocol-based filtering for fuzzy Markov affine systems with switching chain [J].
Cheng, Jun ;
Wu, Yuyan ;
Yan, Huaicheng ;
Wu, Zheng-Guang ;
Shi, Kaibo .
AUTOMATICA, 2022, 141
[7]   Proportional-Integral Observer-Based State Estimation for Markov Memristive Neural Networks With Sensor Saturations [J].
Cheng, Jun ;
Liang, Lidan ;
Yan, Huaicheng ;
Cao, Jinde ;
Tang, Shengda ;
Shi, Kaibo .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (01) :405-416
[8]   Temporal-Intermittent-Spatio-Sampling Control for Stochastic Switched RDNNs With Impulsive Effects [J].
Ding, Kui ;
Zhu, Quanxin .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2023, 70 (01) :141-145
[9]   Robust Simultaneous Fault Estimation and Nonfragile Output Feedback Fault-Tolerant Control for Markovian Jump Systems [J].
Li, Xiaohang ;
Ahn, Choon Ki ;
Lu, Dunke ;
Guo, Shenghui .
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2019, 49 (09) :1769-1776
[10]   Protocol-based control for semi-Markov reaction-diffusion neural networks [J].
Liu, Na ;
Qin, Wenjie ;
Cheng, Jun ;
Cao, Jinde ;
Zhang, Dan .
NEURAL NETWORKS, 2024, 179