Reproducing and improving one-dimensional convolutional neural networks for arterial blood pressure-based cardiac output estimation

被引:0
作者
van Mierlo, Roy R. M. [1 ]
Bouwman, R. Arthur [2 ,3 ]
van Riel, Natal A. W. [1 ]
机构
[1] Eindhoven Univ Technol, Dept Biomed Engn, Eindhoven, Netherlands
[2] Eindhoven Univ Technol, Dept Elect Engn, Eindhoven, Netherlands
[3] Catharina Ziekenhuis Eindhoven, Dept Anesthesiol, Eindhoven, Netherlands
来源
2024 IEEE INTERNATIONAL SYMPOSIUM ON MEDICAL MEASUREMENTS AND APPLICATIONS, MEMEA 2024 | 2024年
关键词
Convolutional Neural Networks; Cardiac Output; Arterial Blood Pressure; PERFORMANCE; THERAPY;
D O I
10.1109/MEMEA60663.2024.10596819
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Cardiac output (CO) is an essential indicator of patient hemodynamic status. Monitoring of CO in the intensive care unit has been shown to improve perioperative outcomes by supporting patient fluid management. Arterial blood pressure-based cardiac output (APCO) estimation devices are minimally invasive compared to CO estimation using (transpulmonary) thermodilution, like the PiCCO system or the highly invasive gold standard method using the pulmonary artery catheter (PAC). However, inaccuracy in APCO device estimations during hemodynamically unstable periods, especially in vasodilatory situations, hamper their application in the critical care setting. An approach to improve APCO estimation involves utilizing a one-dimensional convolutional neural network (1D-CNN) to predict stroke volume (SV) from arterial blood pressure (ABP) and patient demographics. Previously published work demonstrated that by pre-training models on SV data from commercial APCO devices and adjusting them with transfer learning using SV data from the PAC, 1D-CNNs have superior performance over the in-use FloTrac APCO device. Preliminary results in the current study showed that by altering model training hyperparameters, model performance was improved further, significantly lowering the absolute error in PAC SV predictions of the original settings model from 13.9 (SD 11.6) mL to 11.7 (SD 11.0) mL for the new settings model (p < 0.001). This result shows promise in further improvement of deep learning-based APCO algorithms and the estimation of CO from ABP in the critical care setting.
引用
收藏
页数:6
相关论文
共 31 条
[1]  
Abreu Alexandre R, 2004, J Intensive Care Med, V19, P291, DOI 10.1177/0885066604265255
[2]   Does goal-directed haemodynamic and fluid therapy improve peri-operative outcomes? A systematic review and meta-analysis [J].
Chong, Matthew A. ;
Wang, Yongjun ;
Berbenetz, Nicolas M. ;
McConachie, Ian .
EUROPEAN JOURNAL OF ANAESTHESIOLOGY, 2018, 35 (07) :469-483
[3]   Minimally invasive cardiac output monitors [J].
Drummond, Kate E. ;
Murphy, Edward .
BJA EDUCATION, 2012, 12 (01) :5-10
[4]  
Frazier J. A., Edwards Lifesciences
[5]   Understanding Bland Altman analysis [J].
Giavarina, Davide .
BIOCHEMIA MEDICA, 2015, 25 (02) :141-151
[6]   Bag of Tricks for Image Classification with Convolutional Neural Networks [J].
He, Tong ;
Zhang, Zhi ;
Zhang, Hang ;
Zhang, Zhongyue ;
Xie, Junyuan ;
Li, Mu .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :558-567
[7]   Concordance rate of a four-quadrant plot for repeated measurements [J].
Hiraishi, Mayu ;
Tanioka, Kensuke ;
Shimokawa, Toshio .
BMC MEDICAL RESEARCH METHODOLOGY, 2021, 21 (01)
[8]   Disagreement in cardiac output measurements between fourth-generation FloTrac and critical care ultrasonography in patients with circulatory shock: a prospective observational study [J].
Kaufmann, Thomas ;
Clement, Ramon P. ;
Hiemstra, Bart ;
Vos, Jaap Jan ;
Scheeren, Thomas W. L. ;
Keus, Frederik ;
van der Horst, Iwan C. C. ;
Koster, Geert ;
Keus, Frederik ;
van der Horst, Iwan C. C. ;
Dieperink, Willem ;
Bleijendaal, Roos ;
Cawale, Yasmin F. ;
Clement, Ramon P. ;
Dijkhuizen, Devon ;
Eck, Ruben J. ;
Hiemstra, Bart ;
Haker, Anja ;
Hilbink, Casper D. H. ;
Kaufmann, Thomas ;
Klasen, Martiene ;
Klaver, Manon ;
Schokking, Laura J. ;
Sikkens, Victor W. ;
Vos, Madelon ;
Woerlee, Justin ;
Wiersema, Renske .
JOURNAL OF INTENSIVE CARE, 2019, 7 (1)
[9]   Cardiac Output Monitoring: Technology and Choice [J].
Kobe, Jeff ;
Mishra, Nitasha ;
Arya, Virendra K. ;
Al-Moustadi, Waiel ;
Nates, Wayne ;
Kumar, Bhupesh .
ANNALS OF CARDIAC ANAESTHESIA, 2019, 22 (01) :6-17
[10]   Estimation of Stroke Volume Variance from Arterial Blood Pressure: Using a 1-D Convolutional Neural Network [J].
Kwon, Hye-Mee ;
Seo, Woo-Young ;
Kim, Jae-Man ;
Shim, Woo-Hyun ;
Kim, Sung-Hoon ;
Hwang, Gyu-Sam .
SENSORS, 2021, 21 (15)