Machine Learning-Based Identification of Risk Factors of Keratoconus Progression Using Raw Corneal Tomography Data

被引:0
作者
Cohen-Tayar, Yamit [1 ,2 ,3 ]
Cohen, Hadar [3 ]
Key, Dor [1 ,2 ,3 ]
Tiosano, Alon [1 ,2 ,3 ]
Rozanes, Eliane [1 ,2 ,3 ]
Livny, Eitan [1 ,2 ,3 ]
Bahar, Irit [1 ,2 ,3 ]
Nahum, Yoav [1 ,2 ,3 ]
机构
[1] Beilinson Med Ctr, Rabin Med Ctr, Dept Ophthalmol, Petah Tiqwa, Israel
[2] Felsenstein Med Res Ctr, Lab Eye Res, Petah Tiqwa, Israel
[3] Tel Aviv Univ, Fac Med, Tel Aviv, Israel
关键词
cross-linking; keratoconus; machine learning; tomography; DIAGNOSIS;
D O I
10.1097/ICO.0000000000003669
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
Purpose:The purpose of this study was to identify early indicators of keratoconus progression in Pentacam data using machine learning (ML) techniques.Methods:A retrospective Pentacam tabular data set was created by retrieving 11,760 tomography tests performed in patients with keratoconus. Data for eyes labeled unstable based on their referral for cross-linking were differentiated from data for eyes labeled stable and not referred for follow-up procedures. A boosted decision tree was trained on the final data set using a cross-validation method.Results:The final labeled data set included 1218 tomography tests. Training a ML model on a single test for each eye did not accurately predict disease progression, as indicated by the mean receiver-operating characteristic area under the curve of 0.59 +/- 0.1, with precision of 0.27, recall of 0.3, and F1 score of 0.28. Training on serial tests for each eye included 819 tomography scans and yielded good prognostic abilities: a receiver-operating characteristic area under the curve of 0.75 +/- 0.07, precision of 0.32, recall of 0.67, and F1 score of 0.43. In addition, 4 of the 55 Pentacam raw data parameters predominantly used the algorithm decision: age, central keratoconus index, Rs B, and D10 mm pachy.Conclusions:This study revealed specific dominant parameters attributing to the classification of stability, which are not routinely assessed in determining progression in common practice. Using ML techniques, keratoconus deterioration was evaluated algorithmically with training on multiple tests, yet was not predicted by a single tomography test. Hence, our study highlights novel factors to the current consideration of cross-linking referral and may serve as a supportive tool for clinicians.
引用
收藏
页码:605 / 612
页数:8
相关论文
共 50 条
  • [31] Diagnosability of Keratoconus Using Deep Learning With Placido Disk-Based Corneal Topography
    Kamiya, Kazutaka
    Ayatsuka, Yuji
    Kato, Yudai
    Shoji, Nobuyuki
    Mori, Yosai
    Miyata, Kazunori
    FRONTIERS IN MEDICINE, 2021, 8
  • [32] Machine learning-based identification of high-risk bone metastasis factors after radical prostatectomy in prostate cancer
    Yang, Haijun
    Wei, Chengxiang
    Zhou, Shan
    Mao, Fei
    FRONTIERS IN ONCOLOGY, 2025, 15
  • [33] Using machine learning-based algorithms to construct cardiovascular risk prediction models for Taiwanese adults based on traditional and novel risk factors
    Cheng, Chien-Hsiang
    Lee, Bor-Jen
    Nfor, Oswald Ndi
    Hsiao, Chih-Hsuan
    Huang, Yi-Chia
    Liaw, Yung-Po
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2024, 24 (01)
  • [34] Evaluation of a Machine-Learning Classifier for Keratoconus Detection Based on Scheimpflug Tomography
    Ruiz Hidalgo, Irene
    Rodriguez, Pablo
    Rozema, Jos J.
    Ni Dhubhghaill, Sorcha
    Zakaria, Nadia
    Tassignon, Marie-Jose
    Koppen, Carina
    CORNEA, 2016, 35 (06) : 827 - 832
  • [35] Machine Learning-Based Source Identification in Sewer Networks
    Salem, Aly K.
    Abokifa, Ahmed A.
    JOURNAL OF WATER RESOURCES PLANNING AND MANAGEMENT, 2023, 149 (08)
  • [36] Machine learning-based identification of patients with a cardiovascular defect
    Louridi, Nabaouia
    Douzi, Samira
    El Ouahidi, Bouabid
    JOURNAL OF BIG DATA, 2021, 8 (01)
  • [37] Machine Learning-Based Approach for the Gambling Problem Identification
    Kozak, Jan
    Probierz, Barbara
    Juszczuk, Przemyslaw
    Dziczkowski, Grzegorz
    Jach, Tomasz
    Stefanski, Piotr
    Glowania, Szymon
    Hrabia, Anita
    Wolek, Gabriel
    Sznapka, Wojciech
    Swierk, Lukasz
    Joniec, Natalia
    VIETNAM JOURNAL OF COMPUTER SCIENCE, 2025,
  • [38] Machine learning-based identification of patients with a cardiovascular defect
    Nabaouia Louridi
    Samira Douzi
    Bouabid El Ouahidi
    Journal of Big Data, 8
  • [39] A machine learning-based algorithm for estimating the original corneal curvature based on corneal topography after orthokeratology
    Li, Yujing
    Zhao, Heng
    Fan, Yuzhuo
    Hu, Jie
    Li, Siying
    Wang, Kai
    Zhao, Mingwei
    CONTACT LENS & ANTERIOR EYE, 2023, 46 (04)
  • [40] A Machine Learning-Based Prediction Model for Cardiovascular Risk in Women With Preeclampsia
    Wang, Guan
    Zhang, Yanbo
    Li, Sijin
    Zhang, Jun
    Jiang, Dongkui
    Li, Xiuzhen
    Li, Yulin
    Du, Jie
    FRONTIERS IN CARDIOVASCULAR MEDICINE, 2021, 8