Machine Learning-Based Identification of Risk Factors of Keratoconus Progression Using Raw Corneal Tomography Data

被引:0
|
作者
Cohen-Tayar, Yamit [1 ,2 ,3 ]
Cohen, Hadar [3 ]
Key, Dor [1 ,2 ,3 ]
Tiosano, Alon [1 ,2 ,3 ]
Rozanes, Eliane [1 ,2 ,3 ]
Livny, Eitan [1 ,2 ,3 ]
Bahar, Irit [1 ,2 ,3 ]
Nahum, Yoav [1 ,2 ,3 ]
机构
[1] Beilinson Med Ctr, Rabin Med Ctr, Dept Ophthalmol, Petah Tiqwa, Israel
[2] Felsenstein Med Res Ctr, Lab Eye Res, Petah Tiqwa, Israel
[3] Tel Aviv Univ, Fac Med, Tel Aviv, Israel
关键词
cross-linking; keratoconus; machine learning; tomography; DIAGNOSIS;
D O I
10.1097/ICO.0000000000003669
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
Purpose:The purpose of this study was to identify early indicators of keratoconus progression in Pentacam data using machine learning (ML) techniques.Methods:A retrospective Pentacam tabular data set was created by retrieving 11,760 tomography tests performed in patients with keratoconus. Data for eyes labeled unstable based on their referral for cross-linking were differentiated from data for eyes labeled stable and not referred for follow-up procedures. A boosted decision tree was trained on the final data set using a cross-validation method.Results:The final labeled data set included 1218 tomography tests. Training a ML model on a single test for each eye did not accurately predict disease progression, as indicated by the mean receiver-operating characteristic area under the curve of 0.59 +/- 0.1, with precision of 0.27, recall of 0.3, and F1 score of 0.28. Training on serial tests for each eye included 819 tomography scans and yielded good prognostic abilities: a receiver-operating characteristic area under the curve of 0.75 +/- 0.07, precision of 0.32, recall of 0.67, and F1 score of 0.43. In addition, 4 of the 55 Pentacam raw data parameters predominantly used the algorithm decision: age, central keratoconus index, Rs B, and D10 mm pachy.Conclusions:This study revealed specific dominant parameters attributing to the classification of stability, which are not routinely assessed in determining progression in common practice. Using ML techniques, keratoconus deterioration was evaluated algorithmically with training on multiple tests, yet was not predicted by a single tomography test. Hence, our study highlights novel factors to the current consideration of cross-linking referral and may serve as a supportive tool for clinicians.
引用
收藏
页码:605 / 612
页数:8
相关论文
共 50 条
  • [21] Machine Learning-Based Characterization and Identification of Tertiary Lymphoid Structures Using Spatial Transcriptomics Data
    Li, Songyun
    Wang, Zhuo
    Huang, Hsien-Da
    Lee, Tzong-Yi
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (07)
  • [22] Machine learning-based identification of proteomic markers in colorectal cancer using UK Biobank data
    Radhakrishnan, Swarnima Kollampallath
    Nath, Dipanwita
    Russ, Dominic
    Merodio, Laura Bravo
    Lad, Priyani
    Daisi, Folakemi Kola
    Acharjee, Animesh
    FRONTIERS IN ONCOLOGY, 2025, 14
  • [23] Risk-Based Data Validation in Machine Learning-Based Software Systems
    Foidl, Harald
    Felderer, Michael
    PROCEEDINGS OF THE 3RD ACM SIGSOFT INTERNATIONAL WORKSHOP ON MACHINE LEARNING TECHNIQUES FOR SOFTWARE QUALITY EVALUATION (MALTESQUE '19), 2019, : 13 - 18
  • [24] Machine learning-based identification of critical factors for cadmium accumulation in rice grains
    Yang, Weichun
    Li, Jiaxin
    Nie, Kai
    Zhao, Pengwei
    Xia, Hui
    Li, Qi
    Liao, Qi
    Li, Qingzhu
    Dong, Chunhua
    Yang, Zhihui
    Si, Mengying
    ENVIRONMENTAL GEOCHEMISTRY AND HEALTH, 2025, 47 (01)
  • [25] Machine Learning-Based Identification of Lithic Microdebitage
    Eberl, Markus
    Bell, Charreau S.
    Spencer-Smith, Jesse
    Raj, Mark
    Sarubbi, Amanda
    Johnson, Phyllis S.
    Rieth, Amy E.
    Chaudhry, Umang
    Estrada Aguila, Rebecca
    McBride, Michael
    ADVANCES IN ARCHAEOLOGICAL PRACTICE, 2023, 11 (02): : 152 - 163
  • [26] Comparison of machine learning–based algorithms using corneal asymmetry vs. single-metric parameters for keratoconus detection
    Gaurav Prakash
    Chandrashan Perera
    Vishal Jhanji
    Graefe's Archive for Clinical and Experimental Ophthalmology, 2023, 261 : 2335 - 2342
  • [27] Dissecting the Profile of Corneal Thickness With Keratoconus Progression Based on Anterior Segment Optical Coherence Tomography
    Dong, Yanling
    Li, Dongfang
    Guo, Zhen
    Liu, Yang
    Lin, Ping
    Lv, Bin
    Lv, Chuanfeng
    Xie, Guotong
    Xie, Lixin
    FRONTIERS IN NEUROSCIENCE, 2022, 15
  • [28] Machine learning-based assessment of diabetes risk
    Sun, Qi
    Cheng, Xin
    Han, Kuo
    Sun, Yichao
    Ren, He
    Li, Ping
    APPLIED INTELLIGENCE, 2025, 55 (02)
  • [29] Machine learning-based detection of chemical risk
    Grabar, Natalia
    Wandji Tchamp, Ornella
    Maxim, Laura
    E-HEALTH - FOR CONTINUITY OF CARE, 2014, 205 : 725 - 729
  • [30] Diagnosability of Keratoconus Using Deep Learning With Placido Disk-Based Corneal Topography
    Kamiya, Kazutaka
    Ayatsuka, Yuji
    Kato, Yudai
    Shoji, Nobuyuki
    Mori, Yosai
    Miyata, Kazunori
    FRONTIERS IN MEDICINE, 2021, 8