Dynamical Multimodality in Systems Driven by Ornstein-Uhlenbeck Noise

被引:1
作者
Mandrysz, Michal [1 ]
Dybiec, Bartlomiej [2 ,3 ]
机构
[1] Jagiellonian Univ, Fac Phys Astron & Appl Comp Sci, Ul St Lojasiewicza 11, PL-30348 Krakow, Poland
[2] Jagiellonian Univ, Inst Theoret Phys, Ul St Lojasiewicza 11, PL-30348 Krakow, Poland
[3] Jagiellonian Univ, Mark Kac Ctr Complex Syst Res, Ul St Lojasiewicza 11, PL-30348 Krakow, Poland
关键词
Ornstein-Uhlenbeck process; dichotomous noise; stationary density; stochastic dynamics; COLORED-NOISE; SUPERDIFFUSION; DISTRIBUTIONS; OSCILLATOR; BIMODALITY; BEHAVIOR; WHITE;
D O I
10.3390/e27030263
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The properties of dynamical systems driven by noise are determined by the combined action of deterministic forces and random fluctuations. The action of non-white (correlated) noise is capable of producing stationary states with a number of modes larger than the number of (stable) fixed points of the deterministic potential. In particular, the action of Ornstein-Uhlenbeck noise can induce the bimodality of the stationary states in fixed single-well potentials. Here, we study the emergence of dynamical multimodality in systems subject to the simultaneous action of Ornstein-Uhlenbeck and Markovian dichotomous noise in 1D and 2D setups. The randomization of the potential due to the action of dichotomous noise can be used to control the number of modes in the stationary states.
引用
收藏
页数:13
相关论文
共 49 条
[1]   Drift by dichotomous Markov noise [J].
Bena, I ;
Van den Broeck, C ;
Kawai, R ;
Lindenberg, K .
PHYSICAL REVIEW E, 2003, 68 (04) :411111-411111
[2]   The scaling laws of human travel [J].
Brockmann, D ;
Hufnagel, L ;
Geisel, T .
NATURE, 2006, 439 (7075) :462-465
[3]   Forced dichotomic diffusion in a viscous media [J].
Calisto, Hector ;
Bologna, Mauro ;
Chandia, Kristopher J. .
EUROPEAN PHYSICAL JOURNAL B, 2017, 90 (02)
[4]   Multimodal stationary states in symmetric single-well potentials driven by Cauchy noise [J].
Capala, Karol ;
Dybiec, Bartlomiej .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2019,
[5]  
Chechkin AV, 2006, ADV CHEM PHYS, V133, P439
[6]   Fractional kinetics for relaxation and superdiffusion in a magnetic field [J].
Chechkin, AV ;
Gonchar, VY ;
Szydlowski, M .
PHYSICS OF PLASMAS, 2002, 9 (01) :78-88
[7]  
Chechkin AV., 2008, Anomalous transport: Foundations and applications, P129, DOI [10.1002/9783527622979.ch5, DOI 10.1002/9783527622979.CH5, 10.1002/9783527622979]
[8]   Nondiffusive transport in plasma turbulence: A fractional diffusion approach [J].
del-Castillo-Negrete, D ;
Carreras, BA ;
Lynch, VE .
PHYSICAL REVIEW LETTERS, 2005, 94 (06)
[9]   Asymmetric transport and non-Gaussian statistics of passive scalars in vortices in shear [J].
del-Castillo-Negrete, D .
PHYSICS OF FLUIDS, 1998, 10 (03) :576-594
[10]   Bimodal distribution of path multiplicity in random networks [J].
Dong, Yu ;
Deng, Ye ;
Wu, Jun .
CHAOS SOLITONS & FRACTALS, 2025, 193