Deep Learning Superresolution for Simultaneous Multislice Parallel Imaging-Accelerated Knee MRI Using Arthroscopy Validation

被引:1
|
作者
Walter, Sven S. [1 ,2 ]
Vosshenrich, Jan [1 ,3 ]
Rodrigues, Tatiane Cantarelli [4 ]
Dalili, Danoob [5 ]
Fritz, Benjamin [6 ]
Kijowski, Richard [1 ]
Park, Eun Hae [1 ,7 ,8 ]
Serfaty, Aline [9 ]
Stern, Steven E. [10 ]
Brinkmann, Inge [11 ]
Koerzdoerfer, Gregor [12 ]
Fritz, Jan [1 ]
机构
[1] NYU Grossman Sch Med, Dept Radiol, Div Musculoskeletal Radiol, 660 1st Ave,3rd Fl,Rm 313, New York, NY 10016 USA
[2] Eberhard Karls Univ Tubingen, Univ Hosp Tubingen, Dept Diagnost & Intervent Radiol, Tubingen, Germany
[3] Univ Hosp Basel, Dept Radiol, Basel, Switzerland
[4] Hosp Coracao, Dept Radiol, Sao Paulo, Brazil
[5] South West London Elective Orthopaed Ctr SWLEOC, Acad Surg Unit, London, England
[6] Balgrist Univ Hosp, Dept Radiol, Zurich, Switzerland
[7] Chonbuk Natl Univ Hosp, Dept Radiol, Jeonju, South Korea
[8] Res Inst Clin Med Jeonbuk Natl Univ, Biomed Res Inst Jeonbuk Natl Univ Hosp, Jeonju 54907, Jeonbuk, South Korea
[9] Medscanlagos Radiol, Cabo Frio, Rio De Janeiro, Brazil
[10] Bond Univ, Ctr Data Analyt, Gold Coast, Australia
[11] Siemens Healthineers AG, Erlangen, Germany
[12] Siemens Med Solut USA, Malvern, PA USA
关键词
ARTICULAR-CARTILAGE; RESOLUTION; SEQUENCE; TEARS; RECONSTRUCTION; NETWORK;
D O I
10.1148/radiol.241249
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Background: Deep learning (DL) methods can improve accelerated MRI but require validation against an independent reference standard to ensure robustness and accuracy. Purpose: To validate the diagnostic performance of twofold-simultaneous-multislice (SMSx2) twofold-parallel-imaging (PIx2)-accelerated DL superresolution MRI in the knee against conventional SMSx2-PIx2-accelerated MRI using arthroscopy as the reference standard. Materials and Methods: Adults with painful knee conditions were prospectively enrolled from December 2021 to October 2022. Participants underwent fourfold SMSx2-PIx2-accelerated standard-of-care and investigational DL superresolution MRI at 3 T. Seven radiologists independently evaluated the MRI examinations for overall image quality (using Likert scale scores: 1, very bad, to 5, very good) and the presence or absence of meniscus and ligament tears. Articular cartilage was categorized as intact, or partial or full-thickness defects. Statistical analyses included interreader agreements (Cohen kappa and Gwet AC2) and diagnostic performance testing used area under the receiver operating characteristic curve (AUC) values. Results: A total of 116 adults (mean age, 45 years +/- 15 [SD]; 74 men) who underwent arthroscopic surgery within 38 days +/- 22 were evaluated. Overall image quality was better for DL superresolution MRI (median Likert score, 5; range, 3-5) than conventional MRI (median Likert score, 4; range, 3-5) (P < .001). Diagnostic performances of conventional versus DL superresolution MRI were similar for medial meniscus tears (AUC, 0.94 [95% CI: 0.89, 0.97] vs 0.94 [95% CI: 0.90, 0.98], respectively; P > .99), lateral meniscus tears (AUC, 0.85 [95% CI: 0.78, 0.91] vs 0.87 [95% CI: 0.81, 0.94], respectively; P = .96), and anterior cruciate ligament tears (AUC, 0.98 [95% CI: 0.93, >0.99] vs 0.98 [95% CI: 0.93, >0.99], respectively; P > .99). DL superresolution MRI (AUC, 0.78; 95% CI: 0.75, 0.81) had higher diagnostic performance than conventional MRI (AUC, 0.71; 95% CI: 0.67, 0.74; P = .002) for articular cartilage lesions. DL superresolution MRI did not introduce hallucinations or erroneously omit abnormalities. Conclusion: Compared with conventional SMSx2-PIx2-accelerated MRI, fourfold SMSx2-PIx2-accelerated DL superresolution MRI in the knee provided better image quality, similar performance for detecting meniscus and ligament tears, and improved performance for depicting articular cartilage lesions. (c) RSNA, 2025
引用
收藏
页数:13
相关论文
共 39 条
  • [21] Deep-learning-assisted diagnosis for knee magnetic resonance imaging: Development and retrospective validation of MRNet
    Bien, Nicholas
    Rajpurkar, Pranav
    Ball, Robyn L.
    Irvin, Jeremy
    Park, Allison
    Jones, Erik
    Bereket, Michael
    Patel, Bhavik N.
    Yeom, Kristen W.
    Shpanskaya, Katie
    Halabi, Safwan
    Zucker, Evan
    Fanton, Gary
    Amanatullah, Derek F.
    Beaulieu, Christopher F.
    Riley, Geoffrey M.
    Stewart, Russell J.
    Blankenberg, Francis G.
    Larson, David B.
    Jones, Ricky H.
    Langlotz, Curtis P.
    Ng, Andrew Y.
    Lungren, Matthew P.
    PLOS MEDICINE, 2018, 15 (11)
  • [22] High-resolution 3D MR Fingerprinting using parallel imaging and deep learning
    Chen, Yong
    Fang, Zhenghan
    Hung, Sheng-Che
    Chang, Wei-Tang
    Shen, Dinggang
    Lin, Weili
    NEUROIMAGE, 2020, 206
  • [23] Accelerated T1 acquisition for knee cartilage quantification using compressed sensing and data-driven parallel imaging: A feasibility study
    Pandit, Prachi
    Rivoire, Julien
    King, Kevin
    Li, Xiaojuan
    MAGNETIC RESONANCE IN MEDICINE, 2016, 75 (03) : 1256 - 1261
  • [24] Low-Dose 68 Ga-PSMA Prostate PET/MRI Imaging Using Deep Learning Based on MRI Priors
    Deng, Fuquan
    Li, Xiaoyuan
    Yang, Fengjiao
    Sun, Hongwei
    Yuan, Jianmin
    He, Qiang
    Xu, Weifeng
    Yang, Yongfeng
    Liang, Dong
    Liu, Xin
    Mok, Greta S. P.
    Zheng, Hairong
    Hu, Zhanli
    FRONTIERS IN ONCOLOGY, 2022, 11
  • [25] Super-resolution synthetic MRI using deep learning reconstruction for accurate diagnosis of knee osteoarthritis
    Wang, Kejun
    Liu, Weiyin Vivian
    Yang, Renjie
    Li, Liang
    Lu, Xuefang
    Lei, Haoran
    Jiang, Jiawei
    Zha, Yunfei
    INSIGHTS INTO IMAGING, 2025, 16 (01):
  • [26] XDL-ESI: Electrophysiological Sources Imaging via explainable deep learning framework with validation on simultaneous EEG and iEEG
    Jiao, Meng
    Xian, Xiaochen
    Wang, Boyu
    Zhang, Yu
    Yang, Shihao
    Chen, Spencer
    Sun, Hai
    Liu, Feng
    NEUROIMAGE, 2024, 299
  • [27] A review of deep learning-based reconstruction methods for accelerated MRI using spatiotemporal and multi-contrast redundancies
    Kim, Seonghyuk
    Park, HyunWook
    Park, Sung-Hong
    BIOMEDICAL ENGINEERING LETTERS, 2024, 14 (06) : 1221 - 1242
  • [28] Deep learning-accelerated image reconstruction in back pain-MRI imaging: reduction of acquisition time and improvement of image quality
    Estler, Arne
    Hauser, Till-Karsten
    Brunnee, Merle
    Zerweck, Leonie
    Richter, Vivien
    Knoppik, Jessica
    Oergel, Anja
    Buerkle, Eva
    Adib, Sasan Darius
    Hengel, Holger
    Nikolaou, Konstantin
    Ernemann, Ulrike
    Gohla, Georg
    RADIOLOGIA MEDICA, 2024, 129 (03): : 478 - 487
  • [29] Accelerated cardiac cine magnetic resonance imaging using deep low-rank plus sparse network: validation in patients
    Yan, Chenyuan
    Liu, Yuanyuan
    Wang, Che
    Fan, Weixiong
    Zhu, Yanjie
    QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2024, 14 (07) : 5131 - 5143
  • [30] Efficient Detection of Knee Anterior Cruciate Ligament from Magnetic Resonance Imaging Using Deep Learning Approach
    Javed Awan, Mazhar
    Mohd Rahim, Mohd Shafry
    Salim, Naomie
    Mohammed, Mazin Abed
    Garcia-Zapirain, Begonya
    Abdulkareem, Karrar Hameed
    DIAGNOSTICS, 2021, 11 (01)