Regulating Interphase Chemistry by Targeted Functionalization of Hard Carbon Anode in Ester-Based Electrolytes for High-Performance Sodium-Ion Batteries

被引:0
|
作者
Zhang, Guangxiang [1 ]
Fu, Chuankai [1 ]
Gao, Shuyang [1 ]
Zhao, Haoquan [1 ]
Ma, Chi [1 ]
Liu, Ziwei [1 ]
Li, Shuai [1 ]
Ju, Zhijin [2 ]
Huo, Hua [1 ]
Zuo, Pengjian [1 ]
Yin, Geping [1 ]
Liu, Tiefeng [3 ,4 ]
Ma, Yulin [1 ]
机构
[1] Harbin Inst Technol, Sch Chem & Chem Engn, State Key Lab Space Power Sources, Harbin 150001, Peoples R China
[2] Wenzhou Univ, Coll Chem & Mat Engn, Wenzhou 325035, Peoples R China
[3] Zhejiang Univ, Coll Chem & Biol Engn, Hangzhou 310027, Peoples R China
[4] Quzhou Inst Power Batteries & Energy Storage, Quzhou 324000, Peoples R China
基金
中国国家自然科学基金;
关键词
self-assembled molecular layer; hard carbon anode; ester-based electrolytes; surface functional groups; sodium-ion batteries;
D O I
10.1002/anie.202424028
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Commercial hard carbon (HC) anode suffers from unexpected interphase chemistry rooted in the parasitic reactions between surface oxygen-functional groups and ester-based electrolytes. Herein, an innovative strategy is proposed to regulate interphase chemistry by tailoring targeted functional groups on the HC surface, where highly active undesirable oxygen-functional groups are skillfully converted into a Si-O-Si molecular layer favorable for anchoring anions. Then, an inorganic/organic hybrid solid electrolyte interphase with low interfacial charge transfer resistance and enhanced cycling durability is constructed successfully. Consequently, the modified HC anode delivers an excellent rate capability of 206.2 mAh g-1 at 0.5 A g-1 and a remarkable capacity retention of 92.5 % after 1000 cycles at 1.0 A g-1. Moreover, the coin-type full-cell equipped with Na2Fe[Fe(CN)6] cathode exhibits an exceptional capacity retention ratio of 80.9 % after 800 cycles at 1C. The present simple and effective interfacial modification strategy offers a promising and alternative avenue for promoting the development and practicability of HC anode in ester-based electrolytes for sodium-ion batteries.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Fluorine-Doped Hard Carbon as the Advanced Performance Anode Material of Sodium-Ion Batteries
    Kong, Lingchen
    Li, Yu
    Feng, Wei
    TRANSACTIONS OF TIANJIN UNIVERSITY, 2022, 28 (02) : 123 - 131
  • [42] Nano-Graphite-Doped Spartina alterniflora-Based Hard Carbon as High Performance Anode for Sodium-Ion Batteries
    Cheng, Hongkuan
    Shu, Qihang
    Wei, Huanyu
    Luo, Xingzhang
    Huang, Suzhen
    Zheng, Zheng
    JOURNAL OF ELECTROCHEMICAL ENERGY CONVERSION AND STORAGE, 2024, 21 (03)
  • [43] Mechanistic Insights into the Interactions between a New Type of Hard Carbon Anode and Organic Electrolytes in Sodium-Ion Batteries
    You, Shunzhang
    Deng, Qiang
    Zhang, Qimeng
    Huang, Kevin
    Yang, Chenghao
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2023, 11 (28): : 10590 - 10597
  • [44] High temperature induced abundant closed nanopores for hard carbon as high-performance sodium-ion batteries anodes
    Sun, Lei
    Li, Jian
    Wang, Lihua
    Li, Enxi
    Huang, Weiguo
    JOURNAL OF POWER SOURCES, 2024, 624
  • [45] Manipulating Electrolyte Interface Chemistry Enables High-Performance TiO2 Anode for Sodium-Ion Batteries
    Wang, Qi
    Zhang, Rui
    Sun, Dan
    Wang, Haiyan
    Tang, Yougen
    BATTERIES-BASEL, 2024, 10 (10):
  • [46] Hard carbon anode materials for hybrid sodium-ion/metal batteries with high energy density
    Shpalter, Denis
    Bobyleva, Zoya V.
    Lakienko, Grigorii P.
    Safiullina, Alina R.
    Jablanovic, Anastasija
    Lutsenko, Denis S.
    Drozhzhin, Oleg A.
    Antipov, Evgeny V.
    JOURNAL OF POWER SOURCES, 2024, 624
  • [47] High-performance sodium-ion anode based on stable phosphorus-carbon bond in black phosphorus-hard carbon nanocomposite
    Ai, Wenqiang
    Li, Lingke
    Dong, Shilong
    Ji, Hongyu
    Liu, Yang
    Zu, Lei
    Lian, Huiqin
    JOURNAL OF POWER SOURCES, 2024, 618
  • [48] Hard Carbon Derived from Straw as Anode Materials for Sodium-ion Batteries
    Zhang, Hua-zhi
    Chen, Chao
    Xu, Hui
    Yang, Li-wen
    Chen, Jian
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2022, 17 (11):
  • [49] Hard carbon/graphene microfibers as a superior anode material for sodium-ion batteries
    Cao, Hailiang
    Han, Zhaohui
    Qin, Chen
    Hou, Ying
    Yang, Liangtao
    Wang, Jun
    Meng, Liang
    Guo, Junjie
    JOURNAL OF POWER SOURCES, 2024, 622
  • [50] MXene-based anode materials for high performance sodium-ion batteries
    Li, Junfeng
    Liu, Hao
    Shi, Xudong
    Li, Xiang
    Li, Wuyong
    Guan, Enguang
    Lu, Ting
    Pan, Likun
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2024, 658 : 425 - 440