High-fat diet-induced liver injury in Channa argus through lipid metabolism, anti-oxidative status, apoptosis, and inflammation

被引:0
|
作者
Tian, Jiaxin [1 ,3 ]
Li, Ying [1 ]
Wan, Jiwu [2 ]
Yang, Zhinan [2 ]
Wang, Guiqin [3 ]
机构
[1] Tonghua Normal Univ, Sch Life Sci, Tonghua 134002, Peoples R China
[2] Fisheries Tech Extens Stn, Changchun 130012, Jilin, Peoples R China
[3] Jilin Agr Univ, Coll Anim Sci & Technol, Changchun 130118, Jilin, Peoples R China
基金
中国国家自然科学基金;
关键词
High-fat diet; Channa argus; Fatty liver; Apoptosis; Disease resistance; CARP CTENOPHARYNGODON-IDELLA; OXIDATIVE STRESS; MOLECULAR-MECHANISMS; GROWTH-PERFORMANCE; FEED-UTILIZATION; DISEASE; RESISTANCE; IMMUNE; LEVEL; ACIDS;
D O I
10.1016/j.aqrep.2025.102657
中图分类号
S9 [水产、渔业];
学科分类号
0908 ;
摘要
Channa argus, a valuable fish species in southern Chinese aquaculture,is susceptible to fatty liver disease. To investigate the mechanism of liver injury in C. argus caused by a high-fat diet, fish were fed diets with varying fat levels: control (CK, 11 % fat), L16 (16 % fat), and L22 (22 % fat) for 90 days. Liver condition and the expression of genes related to lipid metabolism were assessed. The results showed that a 22 % fat level diet can influence liver cell status. After 90 days of feeding, the L16 and L22 groups had higher FW, WGR, and SGR than the CK group, the result of FCR in L22 group was lower than the CK and L16 groups, mortality rates were similar, and the results of HSI and VSI in L22 group were higher than the CK group, with no significant difference in HSI between the L16 and L22 groups. Moreover, a 22 % fat level diet can significantly inhibit peroxisome proliferator-activated receptor alpha (PPAR alpha)-related fatty acid transport and oxidation gene expression levels and improve PPAR gamma-related lipid synthesis gene expression levels to increase triglyceride levels in the serum and liver. Lipid accumulation can significantly elevate serum transaminase and pro-inflammatory factors, indicating that a diet with 22 % fat can induce liver injury. Anti-oxidative status-related biochemical parameters were determined; the malondialdehyde level was increased, and anti-oxidative indices (including catalase, superoxide dismutase, glutathione, glutathione-S-transferase, and total antioxidant capacity) were decreased in the L22 group, which also induced DNA damage and inhibited the expression levels of nuclear factor erythroid 2-related factor 2 (Nrf2) pathway-related antioxidant genes to suppress antioxidant ability. At 90 days, the L22 group exhibited a significant upregulation of mRNA expression levels for liver inflammatory factors, including interleukin-1 beta (IL-1 beta), IL-8, IL-10, and tumor necrosis factor-alpha (TNF-alpha). At 90 days, the L22 group exhibited upregulation of pro-inflammatory genes NF-kappa B, p65, and MyD88, alongside increased expression of apoptosis-related genes Bax, caspase-3 (Cas3), Cas8, and Cas9. Innate immune-related biochemical parameters were measured by ELISA, the results showed that decreased complement 3 (C3), C4 and lysozyme levels were determined in serum of the L22 group. Following a 90-day feeding trial, C. argus was intraperitoneally injected with Aeromonas hydrophila, resulting in a significant decrease in survival rate in the L22 group. In summary, a 22 % dietary fat level can promote lipid deposition by altering lipid metabolism, leading to liver injury, compromised antioxidant defenses, increased expression of inflammatory genes in the liver, immune system damage, and decreased disease resistance.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Quercetin Reduces High-Fat Diet-Induced Fat Accumulation in the Liver by Regulating Lipid Metabolism Genes
    Jung, Chang Hwa
    Cho, Iljin
    Ahn, Jiyun
    Jeon, Tae-Il
    Ha, Tae-Youl
    PHYTOTHERAPY RESEARCH, 2013, 27 (01) : 139 - 143
  • [2] Hempseed (Cannabis sativa) lipid fractions alleviate high-fat diet-induced fatty liver disease through regulation of inflammation and oxidative stress
    Kaushal, Naveen
    Gupta, Megha
    Kulshreshtha, Era
    HELIYON, 2020, 6 (07)
  • [3] Erythropoietin and High-Fat Diet-induced Brain Inflammation
    Dey, Soumyadeep
    Anhut, Jennifer L.
    Noguchi, Constance T.
    DIABETES, 2015, 64 : A539 - A539
  • [4] Aging exacerbates high-fat diet-induced steatohepatitis through alteration in hepatic lipid metabolism in mice
    Ishizuka, Kei
    Kon, Kazuyoshi
    Lee-Okada, Hyeon-Cheol
    Arai, Kumiko
    Uchiyama, Akira
    Yamashina, Shunhei
    Yokomizo, Takehiko
    Ikejima, Kenichi
    JOURNAL OF GASTROENTEROLOGY AND HEPATOLOGY, 2020, 35 (08) : 1437 - 1448
  • [5] Endogenous catalase delays high-fat diet-induced liver injury in mice
    Piao, Lingjuan
    Choi, Jiyeon
    Kwon, Guideock
    Ha, Hunjoo
    KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY, 2017, 21 (03): : 317 - 325
  • [6] Protective Effects of Sesamol against Liver Oxidative Stress and Inflammation in High-Fat Diet-Induced Hepatic Steatosis
    Zheng, Wenya
    Song, Ziyu
    Li, Sha
    Hu, Minmin
    Shaukat, Horia
    Qin, Hong
    NUTRIENTS, 2021, 13 (12)
  • [7] Diosgenin Modulates Oxidative Stress and Inflammation in High-Fat Diet-Induced Obesity in Mice
    Khateeb, Sahar
    Albalawi, Aishah
    Alkhedaide, Adel
    DIABETES METABOLIC SYNDROME AND OBESITY-TARGETS AND THERAPY, 2022, 15 : 1589 - 1596
  • [8] HIGH-FAT DIET-INDUCED LIPOGRANULOMA IN LIVER IN RAT
    MANDAL, AK
    SAKLAYEN, MK
    PARK, Y
    TAYLOR, CA
    MINGES, M
    MARKERT, RJ
    JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 1994, 5 (03): : 787 - 787
  • [9] Malus hupehensisleaves extract attenuates obesity, inflammation, and dyslipidemia by modulating lipid metabolism and oxidative stress in high-fat diet-induced obese mice
    Wu, Ya
    Sun, Hailan
    Yi, Ruokun
    Liao, Xiangping
    Li, Jia
    Li, Honggang
    Tan, Fang
    Zhao, Xin
    JOURNAL OF FOOD BIOCHEMISTRY, 2020, 44 (11)
  • [10] Tyrosol regulates hepatic lipid metabolism in high-fat diet-induced NAFLD mice
    Wang, Yu
    Hou, Jihang
    Li, Xiaoping
    Chen, Pan
    Chen, Fang
    Pan, Yao
    Deng, Zeyuan
    Li, Jing
    Liu, Rong
    Luo, Ting
    FOOD & FUNCTION, 2024, 15 (07) : 3752 - 3764