Enhancing hydrothermal durability of gas diffusion layer by elevated temperature treatment technique for proton exchange membrane fuel cell application

被引:0
|
作者
Su, Huaneng [1 ]
Wu, Tianen [1 ]
Liu, Huiyuan [1 ,2 ]
Zhang, Weiqi [1 ]
Xu, Qian [1 ]
Ren, Jianwei [3 ]
机构
[1] Jiangsu Univ, Inst Energy Res, Zhenjiang 212013, Jiangsu, Peoples R China
[2] South China Univ Technol, Sch Chem & Chem Engn, Guangdong Prov Key Lab Fuel Cell Technol, Guangzhou 510641, Peoples R China
[3] Univ Pretoria, Dept Chem Engn, Cnr Lynnwood Rd & Roper St, ZA-0028 Hatfield, South Africa
基金
中国国家自然科学基金;
关键词
Proton exchange membrane fuel cell; Gas diffusion layer; Water removal; Hydrothermal durability; Elevated temperature treatment; MICROPOROUS LAYER; WATER MANAGEMENT; CALCINATION TEMPERATURE; PTFE CONTENT; PERFORMANCE; POLYMER; TRANSPORT; PDMS; GDL; HYDROPHOBICITY;
D O I
10.1016/j.jpowsour.2025.236192
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Liquid water flooding is one of the major challenges in the high current density operation of proton exchange membrane fuel cells (PEMFCs). Optimizing microstructure and properties of gas diffusion layer (GDL), as an essential diffusion medium in PEMFCs, is considered as a promising approach to ensure the long-term stable operation of PEMFCs at high current densities. Herein, we report a simple elevated temperature treatment technique to enhance the hydrothermal durability and water removal capacity of GDLs. Although elevating the heat-treatment temperature from 330 degrees C (most commonly used) to 430 degrees C has no obvious impact on the GDLs' surface hydrophobicity, the GDL treated at 430 degrees C exhibits excellent hydrothermal stability and water removal capacity due to the increased dispersion of polytetrafluoroethylene (PTFE). In PEMFC, the membrane electrode assembly (MEA) containing the elevated-temperature-treated GDL could maintain high performance at high current densities and high humidity conditions. 200 h steady state test at high current densities and high humidity conditions manifests that the MEA with elevated-temperature-treated GDL is more stable and has better water removal capacity than the MEA with normal-temperature-treated GDL.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Gas Diffusion Layer for Proton Exchange Membrane Fuel Cells: A Review
    Guo, Hui
    Chen, Lubing
    Ismail, Sara Adeeba
    Jiang, Lulu
    Guo, Shihang
    Gu, Jie
    Zhang, Xiaorong
    Li, Yifeng
    Zhu, Yuwen
    Zhang, Zihan
    Han, Donglin
    MATERIALS, 2022, 15 (24)
  • [2] Study on preparation process and durability of gas diffusion layer of proton exchange membrane fuel cell
    Li, Tianya
    Zhou, Ke
    Lin, Guangyi
    IONICS, 2022, 28 (03) : 1387 - 1401
  • [3] A review on gas diffusion layer in proton exchange membrane fuel cell: Materials and manufacturing
    Luo, Chuan Xu
    Choo, Hui Leng
    Ahmad, Hafisoh
    Sivasankaran, Praveena Nair
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART B-JOURNAL OF ENGINEERING MANUFACTURE, 2024, 238 (6-7) : 785 - 796
  • [4] Accelerated Durability Testing and Partition Analysis of Gas Diffusion Layer for Proton Exchange Membrane Fuel Cell
    Li, Zhen
    Li, Shang
    Cheng, Kuangwei
    Yan, Wei
    Zhu, Zhen
    Pan, Mu
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2022, 17 (07):
  • [5] A review of the gas diffusion layer in proton exchange membrane fuel cells: Durability and degradation
    Park, Jaeman
    Oh, Hwanyeong
    Ha, Taehun
    Lee, Yoo Il
    Min, Kyoungdoug
    APPLIED ENERGY, 2015, 155 : 866 - 880
  • [6] Durability improvement mechanism of proton exchange membrane fuel cell by microporous layer
    Zuo, Ling
    Jian, Qifei
    Yang, Yupeng
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2022, 46 (13) : 18809 - 18818
  • [7] Effect of water distribution in gas diffusion layer on proton exchange membrane fuel cell performance
    Yue, Like
    Wang, Shixue
    Araki, Takuto
    Utaka, Yoshio
    Wang, Yulin
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (03) : 2969 - 2977
  • [8] Modification and durability of carbon paper gas diffusion layer in proton exchange membrane fuel cell
    Zhang, Wenjiao
    Wang, Yanli
    CERAMICS INTERNATIONAL, 2023, 49 (06) : 9371 - 9381
  • [9] Effect of distribution of polytetrafluoroethylene on durability of gas diffusion backing in proton exchange membrane fuel cell
    Yu, Shuchun
    Hao, Jinkai
    Li, Jin
    Zhang, Longhai
    MATERIALS RESEARCH BULLETIN, 2020, 122 (122)
  • [10] Experimental and computational study of the microporous layer and hydrophobic treatment in the gas diffusion layer of a proton exchange membrane fuel cell
    Sarker, Mrittunjoy
    Rahman, Md Azimur
    Mojica, Felipe
    Mehrazi, Shirin
    Kort-Kamp, Wilton J. M.
    Chuang, Po-Ya Abel
    JOURNAL OF POWER SOURCES, 2021, 509