On the determinants of matrices with elements from arbitrary sets

被引:0
作者
Shkredov, Ilya D. [1 ,2 ]
Shparlinski, Igor E. [3 ]
机构
[1] Purdue Univ, Dept Math, 150 N Univ St, W Lafayette, IN 47907 USA
[2] London Inst Math Sci, London, England
[3] Univ New South Wales, Sch Math & Stat, Sydney, NSW, Australia
基金
澳大利亚研究理事会;
关键词
SINGULAR MATRICES; RATIONAL-POINTS; DENSITY; GROWTH; NUMBER;
D O I
10.1112/mtk.70018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Recently there have been several works estimating the number of nxn$n\times n$ matrices with elements from some finite sets X${\mathcal {X}}$ of arithmetic interest and of a given determinant. Typically such results are compared with the trivial upper bound OXn2-1$O\left(X<^>{n<^>2-1}\right)$, where X$X$ is the cardinality of X${\mathcal {X}}$. Here we show that even for arbitrary sets X subset of R${\mathcal {X}}\subseteq {\mathbb {R}}$, some recent results from additive combinatorics enable us to obtain a stronger bound with a power saving.
引用
收藏
页数:18
相关论文
共 31 条
  • [1] Afifurrahman M, 2024, Arxiv, DOI [arXiv:2401.10086, 10.1515/forum-2024-0114, DOI 10.1515/FORUM-2024-0114]
  • [2] Arutyunyan LM, 2021, MATH NOTES+, V109, P843, DOI [10.4213/mzm11935, 10.1134/S0001434621050175]
  • [3] Hyperbolic lattice point counting in unbounded rank
    Blomer, Valentin
    Lutsko, Christopher
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2024, 2024 (812): : 257 - 274
  • [4] Correlations of Values of Random Diagonal Forms
    Blomer, Valentin
    Li, Junxian
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2023, 2023 (23) : 20296 - 20336
  • [5] On the singularity probability of discrete random matrices
    Bourgain, Jean
    Vu, Van H.
    Wood, Philip Matchett
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 258 (02) : 559 - 603
  • [6] DETERMINANTS AND RANKS OF RANDOM MATRICES OVER ZM
    BRENT, RP
    MCKAY, BD
    [J]. DISCRETE MATHEMATICS, 1987, 66 (1-2) : 35 - 49
  • [7] Counting rational points on algebraic varieties
    Browning, TD
    Heath-Brown, DR
    Salberger, P
    [J]. DUKE MATHEMATICAL JOURNAL, 2006, 132 (03) : 545 - 578
  • [8] THE SINGULARITY PROBABILITY OF A RANDOM SYMMETRIC MATRIX IS EXPONENTIALLY SMALL
    Campos, Marcelo
    Jenssen, Matthew
    Michelen, Marcus
    Sahasrabudhe, Julian
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2025, 38 (01) : 179 - 224
  • [9] Daewoong C., 2020, Rev. Mat. Iberoam, V37, P1365
  • [10] DENSITY OF INTEGER POINTS ON AFFINE HOMOGENEOUS VARIETIES
    DUKE, W
    RUDNICK, Z
    SARNAK, P
    [J]. DUKE MATHEMATICAL JOURNAL, 1993, 71 (01) : 143 - 179