LiteBIRD science goals and forecasts. A case study of the origin of primordial gravitational waves using large-scale CMB polarization

被引:7
作者
Campeti, P. [1 ,2 ,3 ]
Komatsu, E. [1 ,4 ]
Baccigalupi, C. [5 ,6 ,7 ]
Ballardini, M. [3 ,8 ,9 ]
Bartolo, N. [10 ,11 ,12 ]
Carones, A. [13 ,14 ]
Errard, J. [15 ]
Finelli, F. [9 ,16 ]
Flauger, R. [17 ]
Galli, S. [18 ]
Galloni, G. [13 ]
Giardiello, S. [19 ]
Hazumi, M. [4 ,20 ,21 ,22 ,23 ]
Henrot-Versille, S. [24 ]
Hergt, L. T. [25 ]
Kohri, K. [21 ]
Leloup, C. [4 ]
Lesgourgues, J. [26 ]
Macias-Perez, J. [27 ]
Martinez-Gonzalez, E. [28 ]
Matarrese, S. [10 ,11 ,12 ,29 ]
Matsumura, T. [4 ]
Montier, L. [30 ]
Namikawa, T. [4 ]
Paoletti, D. [9 ,16 ]
Poletti, D. [31 ,32 ]
Remazeilles, M. [28 ,33 ]
Shiraishi, M. [34 ]
van Tent, B. [24 ]
Tristram, M. [24 ]
Vacher, L. [5 ]
Vittorio, N. [13 ,14 ]
Weymann-Despres, G. [24 ]
Anand, A. [13 ]
Aumont, J. [30 ]
Aurlien, R. [35 ]
Banday, A. J. [30 ]
Barreiro, R. B. [28 ]
Basyrov, A. [35 ]
Bersanelli, M. [36 ,37 ]
Blinov, D. [38 ,39 ,40 ]
Bortolami, M. [5 ,8 ]
Brinckmann, T. [8 ]
Calabrese, E. [19 ]
Carralot, F. [5 ]
Casas, F. J. [28 ]
Clermont, L. [41 ]
Columbro, F. [42 ,43 ]
Conenna, G. [31 ]
Coppolecchia, A. [42 ,43 ]
机构
[1] Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85748 Garching, Germany
[2] Excellence Cluster ORIGINS, Boltzmannstr 2, D-85748 Garching, Germany
[3] INFN, Sez Ferrara, Via Saragat 1, I-44122 Ferrara, Italy
[4] Univ Tokyo, UTIAS, Kavli Inst Phys & Math Universe Kavli IPMU, WPI, Kashiwa, Chiba 2778583, Japan
[5] Int Sch Adv Studies SISSA, Via Bonomea 265, I-34136 Trieste, Italy
[6] INFN, Sez Trieste, Via Valerio 2, I-34127 Trieste, Italy
[7] IFPU, Via Beirut 2, I-34151 Trieste, Italy
[8] Univ Ferrara, Dipartimento Fis & Sci Terra, Via Saragat 1, I-44122 Ferrara, Italy
[9] INAF, OAS Bologna, Via Piero Gobetti 93-3, I-40129 Bologna, Italy
[10] Univ Padua, Dipartimento Fis & Astron G Galilei, Via Marzolo 8, I-35131 Padua, Italy
[11] INFN, Sez Padova, Via Marzolo 8, I-35131 Padua, Italy
[12] INAF, Osservatorio Astron Padova, Vicolo Osservatorio 5, I-35122 Padua, Italy
[13] Univ Roma Tor Vergata, Dipartimento Fis, Via Ric Sci 1, I-00133 Rome, Italy
[14] Univ Roma Tor Vergata, INFN, Sez Roma2, Via Ric Sci 1, I-00133 Rome, Italy
[15] Univ Paris, CNRS, Astroparticule & Cosmol, F-75013 Paris, France
[16] INFN, Sez Bologna, Viale C Berti Pichat 6-2, I-40127 Bologna, Italy
[17] Univ Calif San Diego, Dept Phys, San Diego, CA 92093 USA
[18] Sorbonne Univ, Inst Astrophys Paris, CNRS, Paris, France
[19] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, Wales
[20] High Energy Accelerator Res Org KEK, Int Ctr Quantum Field Measurement Syst Studies Un, Tsukuba, Ibaraki 3050801, Japan
[21] High Energy Accelerator Res Org KEK, Inst Particle & Nucl Studies, Tsukuba, Ibaraki 3050801, Japan
[22] Japan Aerosp Explorat Agcy JAXA, Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2525210, Japan
[23] Grad Univ Adv Studies SOKENDAI, Hayama, Kanagawa 2400115, Japan
[24] Univ Paris Saclay, IJCLab, CNRS, IN2P3, F-91405 Orsay, France
[25] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC V6T 1Z1, Canada
[26] Rhein Westfal TH Aachen, Inst Theoret Particle Phys & Cosmol TTK, D-52056 Aachen, Germany
[27] Univ Grenoble Alpes, CNRS, LPSC, IN2P3, 53 Ave Martyrs, F-38000 Grenoble, France
[28] CSIC UC, Inst Fis Cantabria IFCA, Ave Los Castros SN, Santander 39005, Spain
[29] Gran Sasso Sci Inst GSSI, Viale F Crispi 7, I-67100 Laquila, Italy
[30] Univ Toulouse, CNRS, IRAP, CNES,UPS, Toulouse, France
[31] Univ Milano Bicocca, Dept Phys, Piazza Sci 3, I-20126 Milan, Italy
[32] INFN, Sez Milano Bicocca, Piazza Sci 3, I-20126 Milan, Italy
[33] Univ Manchester, Dept Phys & Astron, Sch Nat Sci, Jodrell Bank Ctr Astrophys, Alan Turing Bldg,Oxford Rd, Manchester M13 9PL, Lancs, England
[34] Suwa Univ Sci, Chino, Nagano 3910292, Japan
[35] Univ Oslo, Inst Theoret Astrophys, Oslo, Norway
[36] Univ Milan, Dipartimento Fis, Via Celoria 16, I-20133 Milan, Italy
[37] INFN, Sez Milano, Via Celoria 16, I-20133 Milan, Italy
[38] Fdn Res & Technol Hellas, Inst Astrophys, GR-70013 Iraklion, Greece
[39] Univ Crete, Dept Phys, GR-70013 Iraklion, Greece
[40] Univ Crete, ITCP, GR-70013 Iraklion, Greece
[41] Univ Liege, Ctr Spatial Liege, Ave Pre Aily, B-4031 Angleur, Belgium
[42] Univ Roma La Sapienza, Dipartimento Fis, Ple A Moro 2, Rome, Italy
[43] INFN, Sez Roma, Ple A Moro 2, I-00185 Rome, Italy
[44] INFN, Sez Pisa, Largo Bruno Pontecorvo 3, I-56127 Pisa, Italy
[45] Univ Cantabria, Dept Fis Moderna, Avda Los Castros S-N, E-39005 Santander, Spain
[46] Stockholm Univ, Dept Phys, Oskar Klein Ctr, SE-10691 Stockholm, Sweden
[47] Univ Paris, Univ PSL, Sorbonne Univ, Lab Phys,Ecole Normale Super,ENS,CNRS, F-75005 Paris, France
[48] Univ Paris Saclay, CNRS, Inst Astrophys Spatiale, F-91405 Orsay, France
[49] Univ Catania, Dipartimento Fis & Astron, Via S Sofia 64, I-95123 Catania, Italy
[50] INAF, Osservatorio Astrofis Catania, Via S Sofia 78, I-95123 Catania, Italy
来源
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS | 2024年 / 06期
基金
瑞典研究理事会; 欧洲研究理事会;
关键词
CMBR experiments; gravitational waves and CMBR polarization; inflation; primordial gravitational waves (theory); INFLATIONARY UNIVERSE SCENARIO; PHASE-TRANSITION; GRAVITY-WAVES; FLUCTUATIONS; SEPARATION; INFERENCE; SIGNATURE; FLATNESS; HORIZON; SKY;
D O I
10.1088/1475-7516/2024/06/008
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We study the possibility of using the LiteBIRD satellite B-mode survey to constrain models of inflation producing specific features in CMB angular power spectra. We explore a particular model example, i.e. spectator axion-SU(2) gauge field inflation. This model can source parity-violating gravitational waves from the amplification of gauge field fluctuations driven by a pseudoscalar "axionlike" field, rolling for a few e-folds during inflation. The sourced gravitational waves can exceed the vacuum contribution at reionization bump scales by about an order of magnitude and can be comparable to the vacuum contribution at recombination bump scales. We argue that a satellite mission with full sky coverage and access to the reionization bump scales is necessary to understand the origin of the primordial gravitational wave signal and distinguish among two production mechanisms: quantum vacuum fluctuations of spacetime and matter sources during inflation. We present the expected constraints on model parameters from LiteBIRD satellite simulations, which complement and expand previous studies in the literature. We find that LiteBIRD will be able to exclude with high significance standard single-field slow-roll models, such as the Starobinsky model, if the true model is the axion-SU(2) model with a feature at CMB scales. We further investigate the possibility of using the parity-violating signature of the model, such as the TB and EB angular power spectra, to disentangle it from the standard single-field slow-roll scenario. We find that most of the discriminating power of LiteBIRD will reside in BB angular power spectra rather than in TB and EB correlations.
引用
收藏
页数:36
相关论文
共 159 条
  • [1] Planck 2015 results X. Diffuse component separation: Foreground maps
    Adam, R.
    Ade, P. A. R.
    Aghanim, N.
    Alves, M. I. R.
    Arnaud, M.
    Ashdown, M.
    Aumont, J.
    Baccigalupi, C.
    Banday, A. J.
    Barreiro, R. B.
    Bartlett, J. G.
    Bartolo, N.
    Battaner, E.
    Benabed, K.
    Benoit, A.
    Benoit-Levy, A.
    Bernard, J. -P.
    Bersanelli, M.
    Bielewicz, P.
    Bock, J. J.
    Bonaldi, A.
    Bonavera, L.
    Bond, J. R.
    Borrill, J.
    Bouchet, F. R.
    Boulanger, F.
    Bucher, M.
    Burigana, C.
    Butler, R. C.
    Calabrese, E.
    Cardoso, J. -F.
    Catalano, A.
    Challinor, A.
    Chamballu, A.
    Chary, R. -R.
    Chiang, H. C.
    Christensen, P. R.
    Clements, D. L.
    Colombi, S.
    Colombo, L. P. L.
    Combet, C.
    Couchot, F.
    Coulais, A.
    Crill, B. P.
    Curto, A.
    Cuttaia, F.
    Danese, L.
    Davies, R. D.
    Davis, R. J.
    de Bernardis, P.
    [J]. ASTRONOMY & ASTROPHYSICS, 2016, 594
  • [2] A Constraint on Primordial B-modes from the First Flight of the Spider Balloon-borne Telescope
    Ade, P. A. R.
    Amiri, M.
    Benton, S. J.
    Bergman, A. S.
    Bihary, R.
    Bock, J. J.
    Bond, J. R.
    Bonetti, J. A.
    Bryan, S. A.
    Chiang, H. C.
    Contaldi, C. R.
    Dore, O.
    Duivenvoorden, A. J.
    Eriksen, H. K.
    Farhang, M.
    Filippini, J. P.
    Fraisse, A. A.
    Freese, K.
    Galloway, M.
    Gambrel, A. E.
    Gandilo, N. N.
    Ganga, K.
    Gualtieri, R.
    Gudmundsson, J. E.
    Halpern, M.
    Hartley, J.
    Hasselfield, M.
    Hilton, G.
    Holmes, W.
    Hristov, V. V.
    Huang, Z.
    Irwin, K. D.
    Jones, W. C.
    Karakci, A.
    Kuo, C. L.
    Kermish, Z. D.
    Leung, J. S-Y
    Li, S.
    Mak, D. S. Y.
    Mason, P., V
    Megerian, K.
    Moncelsi, L.
    Morford, T. A.
    Nagy, J. M.
    Netterfield, C. B.
    Nolta, M.
    O'Brient, R.
    Osherson, B.
    Padilla, I. L.
    Racine, B.
    [J]. ASTROPHYSICAL JOURNAL, 2022, 927 (02)
  • [3] Improved Constraints on Primordial Gravitational Waves using Planck, WMAP, and BICEP/Keck Observations through the 2018 Observing Season
    Ade, P. A. R.
    Ahmed, Z.
    Amiri, M.
    Barkats, D.
    Thakur, R. Basu
    Bischoff, C. A.
    Beck, D.
    Bock, J. J.
    Boenish, H.
    Bullock, E.
    Buza, V
    Cheshire, J. R.
    Connors, J.
    Cornelison, J.
    Crumrine, M.
    Cukierman, A.
    Denison, E., V
    Dierickx, M.
    Duband, L.
    Eiben, M.
    Fatigoni, S.
    Filippini, J. P.
    Fliescher, S.
    Goeckner-Wald, N.
    Goldfinger, D. C.
    Grayson, J.
    Grimes, P.
    Hall, G.
    Halal, G.
    Halpern, M.
    Hand, E.
    Harrison, S.
    Henderson, S.
    Hildebrandt, S. R.
    Hilton, G. C.
    Hubmayr, J.
    Hui, H.
    Irwin, K. D.
    Kang, J.
    Karkare, K. S.
    Karpel, E.
    Kefeli, S.
    Kernasovskiy, S. A.
    Kovac, J. M.
    Kuo, C. L.
    Lau, K.
    Leitch, E. M.
    Lennox, A.
    Megerian, K. G.
    Minutolo, L.
    [J]. PHYSICAL REVIEW LETTERS, 2021, 127 (15)
  • [4] Planck intermediate results XVI. Profile likelihoods for cosmological parameters
    Ade, P. A. R.
    Aghanim, N.
    Arnaud, M.
    Ashdown, M.
    Aumont, J.
    Baccigalupi, C.
    Banday, A. J.
    Barreiro, R. B.
    Bartlett, J. G.
    Battaner, E.
    Benabed, K.
    Benoit-Levy, A.
    Bernard, J. -P.
    Bersanelli, M.
    Bielewicz, P.
    Bobin, J.
    Bonaldi, A.
    Bond, J. R.
    Bouchet, F. R.
    Burigana, C.
    Cardoso, J. -F.
    Catalano, A.
    Chamballu, A.
    Chiang, H. C.
    Christensen, P. R.
    Clements, D. L.
    Colombi, S.
    Colombo, L. P. L.
    Couchot, F.
    Cuttaia, F.
    Danese, L.
    Davies, R. D.
    Davis, R. J.
    de Bernardis, P.
    de Rosa, A.
    de Zotti, G.
    Delabrouille, J.
    Dickinson, C.
    Diego, J. M.
    Dole, H.
    Donzelli, S.
    Dore, O.
    Douspis, M.
    Dupac, X.
    Ensslin, T. A.
    Eriksen, H. K.
    Finelli, F.
    Forni, O.
    Frailis, M.
    Franceschi, E.
    [J]. ASTRONOMY & ASTROPHYSICS, 2014, 566
  • [5] The Simons Observatory: science goals and forecasts
    Ade, Peter
    Aguirre, James
    Ahmed, Zeeshan
    Aiola, Simone
    Ali, Aamir
    Alonso, David
    Alvarez, Marcelo A.
    Arnold, Kam
    Ashton, Peter
    Austermann, Jason
    Awan, Humna
    Baccigalupi, Carlo
    Baildon, Taylor
    Barron, Darcy
    Battaglia, Nick
    Battye, Richard
    Baxter, Eric
    Bazarko, Andrew
    Beall, James A.
    Bean, Rachel
    Beck, Dominic
    Beckman, Shawn
    Beringue, Benjamin
    Bianchini, Federico
    Boada, Steven
    Boettger, David
    Bond, J. Richard
    Borrill, Julian
    Brown, Michael L.
    Bruno, Sarah Marie
    Bryan, Sean
    Calabrese, Erminia
    Calafut, Victoria
    Calisse, Paolo
    Carron, Julien
    Challinor, Anthony
    Chesmore, Grace
    Chinone, Yuji
    Chluba, Jens
    Cho, Hsiao-Mei Sherry
    Choi, Steve
    Coppi, Gabriele
    Cothard, Nicholas F.
    Coughlin, Kevin
    Crichton, Devin
    Crowley, Kevin D.
    Crowley, Kevin T.
    Cukierman, Ari
    D'Ewart, John M.
    Dunner, Rolando
    [J]. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2019, (02):
  • [6] Higgsed Gauge-flation
    Adshead, Peter
    Sfakianakis, Evangelos I.
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2017, (08):
  • [7] Higgsed Chromo-Natural Inflation
    Adshead, Peter
    Martinec, Emil
    Sfakianakis, Evangelos I.
    Wyman, Mark
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2016, (12):
  • [8] Perturbations in Chromo-Natural Inflation
    Adshead, Peter
    Martinec, Emil
    Wyman, Mark
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2013, (09): : 1 - 56
  • [9] Gauge fields and inflation: Chiral gravitational waves, fluctuations, and the Lyth bound
    Adshead, Peter
    Martinec, Emil
    Wyman, Mark
    [J]. PHYSICAL REVIEW D, 2013, 88 (02):
  • [10] Natural Inflation on a Steep Potential with Classical Non-Abelian Gauge Fields
    Adshead, Peter
    Wyman, Mark
    [J]. PHYSICAL REVIEW LETTERS, 2012, 108 (26)