ROS-Activated Nanohydrogel Scaffolds with Multi-Factors Controlled Release for Targeted Dual-Lineage Repair of Osteochondral Defects

被引:3
作者
Wang, Xiuhui [1 ,2 ,3 ]
Wu, Shunli [1 ,2 ,3 ]
Li, Ruiyang [4 ]
Yang, Huijian [5 ]
Sun, Yue [1 ,2 ,3 ]
Cao, Zijie [6 ]
Chen, Xiao [4 ]
Hu, Yan [4 ]
Zhang, Hao [4 ]
Geng, Zhen [1 ,2 ,3 ]
Bai, Long [1 ,2 ,3 ]
Shi, Zhongmin [7 ]
Xu, Ke [1 ,2 ,3 ]
Tan, Hongbo [6 ]
Su, Jiacan [1 ,2 ,3 ,4 ]
机构
[1] Shanghai Univ, Inst Translat Med, Shanghai 200444, Peoples R China
[2] Shanghai Univ, Organoid Res Ctr, Shanghai 200444, Peoples R China
[3] Shanghai Univ, Natl Ctr Translat Med Shanghai, SHU Branch, Shanghai 200444, Peoples R China
[4] Shanghai Jiao Tong Univ, Sch Med, Xinhua Hosp, Dept Orthoped, Shanghai 200092, Peoples R China
[5] Shanghai Zhongye Hosp, Dept Clin Lab, Shanghai 200941, Peoples R China
[6] Peoples Liberat Army Joint Logist Support Force, Dept Orthopaed, Hosp 920, Kunming 650118, Peoples R China
[7] Shanghai Sixth Peoples Hosp, Natl Ctr Orthopaed, Dept Orthoped Surg, Shanghai 200233, Peoples R China
基金
中国国家自然科学基金;
关键词
controlled release; dual-lineage differentiation; nanohydrogel scaffolds; osteochondral regeneration; ROS-activated; AUTOGRAFT TRANSPLANTATION; DELIVERY; CARTILAGE; REGENERATION;
D O I
10.1002/advs.202412410
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Achieving self-healing for osteochondral defects caused by trauma, aging, or disease remains a significant challenge in clinical practice. It is an effective therapeutic strategy to construct gradient-biomimetic biomaterials that replicate the hierarchical structure and complex microenvironment of osteochondral tissues for dual-lineage regeneration of both cartilage and subchondral bone. Herein, ROS-activated nanohydrogels composite bilayer scaffolds with multi-factors controlled release are rationally designed using the combination of 3D printing and gelatin placeholder methods. The resulting nanohydrogel scaffolds exhibit micro-nano interconnected porous bilayer structure and soft-hard complex mechanical strength for facilitating 3D culture of BMSCs in vitro. More importantly, multi-stage continuous responses of anti-inflammation, chondrogenesis and osteogenesis, are effectively induced via the sequential release of multi-factors, including diclofenac sodium (DS), kartogenin (KGN) and bone morphogenetic protein 2 (BMP-2), from ROS-activated nanohydrogel scaffolds, thereby improved dual-lineage regeneration of cartilage and subchondral bone tissue in the osteochondral defect model of SD rats. These findings suggest that ROS-activated nanohydrogel scaffolds with such specific soft-hard bilayer structure and sequential delivery of functional factors, provides a promising strategy in dual-lineage regeneration of osteochondral defects.
引用
收藏
页数:16
相关论文
共 57 条
[1]   Engineering of gradient osteochondral tissue: From nature to lab [J].
Ansari, Sana ;
Khorshidi, Sajedeh ;
Karkhaneh, Akbar .
ACTA BIOMATERIALIA, 2019, 87 :41-54
[2]  
Bayer EA, 2017, TISSUE ENG PT A, V23, P1382, DOI [10.1089/ten.TEA.2017.0027, 10.1089/ten.tea.2017.0027]
[3]   Biomimetic Bilayered Scaffolds for Tissue Engineering: From Current Design Strategies to Medical Applications [J].
Bertsch, Christelle ;
Marechal, Helene ;
Gribova, Varvara ;
Levy, Benjamin ;
Debry, Christian ;
Lavalle, Philippe ;
Fath, Lea .
ADVANCED HEALTHCARE MATERIALS, 2023, 12 (17)
[4]   3D printing of a lithium-calcium-silicate crystal bioscaffold with dual bioactivities for osteochondral interface reconstruction [J].
Chen, Lei ;
Deng, Cuijun ;
Li, Jiayi ;
Yao, Qingqiang ;
Chang, Jiang ;
Wang, Liming ;
Wu, Chengtie .
BIOMATERIALS, 2019, 196 :138-150
[5]   Return to Sport and Patient Satisfaction After Meniscal Allograft Transplantation [J].
Cvetanovich, Gregory L. ;
Christian, David R. ;
Garcia, Grant H. ;
Liu, Joseph N. ;
Redondo, Michael L. ;
Yanke, Adam B. ;
Cole, Brian J. .
ARTHROSCOPY-THE JOURNAL OF ARTHROSCOPIC AND RELATED SURGERY, 2020, 36 (09) :2456-2463
[6]   Bioactive Scaffolds for Regeneration of Cartilage and Subchondral Bone Interface [J].
Deng, Cuijun ;
Zhu, Huiying ;
Li, Jiayi ;
Feng, Chun ;
Yao, Qingqiang ;
Wang, Liming ;
Chang, Jiang ;
Wu, Chengtie .
THERANOSTICS, 2018, 8 (07) :1940-1955
[7]   Bilayer Silk Fibroin/Sodium Alginate Scaffold Delivered hUC-MSCs to Enhance Skin Scarless Healing and Hair Follicle Regeneration with the IRE1/XBP1 Pathway Inhibition [J].
Dou, Zhaona ;
Qiu, Tong ;
Ren, Yimeng ;
Wang, Xinyu ;
Wen, Quan ;
Shen, Ying ;
Wu, Lin ;
Han, Lei ;
Jiang, Tao ;
Xia, Xinke .
ACS BIOMATERIALS SCIENCE & ENGINEERING, 2023, 9 (06) :3476-3487
[8]   Engineered hydrogel microspheres for spheroids and organoids construction [J].
Gai, Tingting ;
Zhang, Yuanwei ;
Li, Guangfeng ;
Zhou, Fengjin ;
He, Chongru ;
Wang, Xiuhui ;
Su, Jiacan .
CHEMICAL ENGINEERING JOURNAL, 2024, 498
[9]   Hydrogel Containing Nanoparticle-Stabilized Liposomes for Topical Antimicrobial Delivery [J].
Gao, Weiwei ;
Vecchio, Drew ;
Li, Jieming ;
Zhu, Jingying ;
Zhang, Qiangzhe ;
Fu, Victoria ;
Li, Jiayang ;
Thamphiwatana, Soracha ;
Lu, Diannan ;
Zhang, Liangfang .
ACS NANO, 2014, 8 (03) :2900-2907
[10]   Systematic Comparison of Biomaterials-Based Strategies for Osteochondral and Chondral Repair in Large Animal Models [J].
Gonzalez Vazquez, Arlyng G. ;
Blokpoel Ferreras, Lia A. ;
Bennett, Kathleen E. ;
Casey, Sarah M. ;
Brama, Pieter A. J. ;
O'Brien, Fergal J. .
ADVANCED HEALTHCARE MATERIALS, 2021, 10 (20)