Lionfish Search Algorithm: A Novel Nature-Inspired Metaheuristic

被引:0
|
作者
Kadhim, Saif Mohanad [1 ]
Paw, Johnny Koh Siaw [2 ,3 ]
Tak, Yaw Chong [2 ,3 ]
Al-Latief, Shahad Thamear Abd [1 ]
Alkhayyat, Ahmed [4 ]
Gupta, Deepak [5 ]
机构
[1] Univ Tenaga Nas, Energy Univ, Coll Grad Studies COGS, Jalan Ikram Uniten, Kajang, Malaysia
[2] Univ Tenaga Nas, Energy Univ, Inst Sustainable Energy, Jalan Ikram Uniten, Kajang, Malaysia
[3] Univ Malaysia Pahang, Automot Engn Ctr, Adv Nano Coolant Lubricant ANCL Lab, Pekan, Malaysia
[4] Islamic Univ, Najaf, Iraq
[5] Maharaja Agrasen Inst Technol, Dept Comp Sci Engn, Delhi, India
关键词
lionfish search; metaheuristics; optimization; swarm-intelligence; OPTIMIZATION ALGORITHM; COMPUTATIONAL INTELLIGENCE; DESIGN;
D O I
10.1111/exsy.70016
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This study introduces an innovative optimization algorithm called Lionfish Search (LFS) technique, which is inspired by the visual predator Lionfish, in which it is specifically imitating their hunting tactics. The suggested algorithm considers several parameters that influence the hunting behaviour of lionfish, such as visual acuity, mobility, striking success, and prey swallowing potential. Furthermore, this study examines the influence of the physiological traits of the lionfish and their relationship with environmental factors. The novel search algorithm has shown enhanced performance and efficiency, particularly in scenarios where the integration of visual cues and intricate hunting strategies is vital. The suggested LFS method was evaluated using 20 well-known single-modal and multi-modal mathematical functions to analyse its different characteristics. The LFS method has shown remarkable efficacy in both exploration and exploitation, effectively reducing the likelihood of being trapped in local optima. Additionally, it has a rapid convergence capacity, particularly in the realm of large-scale global optimization. Comparisons were made between the LFS algorithm, and 10 other prominent algorithms mentioned in the literature. The proposed LFS metaheuristic algorithm outperformed the others on almost all of the examined functions, demonstrating a statistically significant advantage. Moreover, the positive results found in three practical optimization situations demonstrate the effectiveness of the LFS in accomplishing problem-solving tasks that have limited and unknown search areas.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] Migration Search Algorithm: A Novel Nature-Inspired Metaheuristic Optimization Algorithm
    Zhou, Xinxin
    Guo, Yuechen
    Yan, Yuming
    Huang, Yuning
    Xue, Qingchang
    Journal of Network Intelligence, 2023, 8 (02): : 324 - 345
  • [2] Narwhal Optimizer: A Novel Nature-Inspired Metaheuristic Algorithm
    Medjahed, Seyyid
    Boukhatem, Fatima
    INTERNATIONAL ARAB JOURNAL OF INFORMATION TECHNOLOGY, 2024, 21 (03) : 418 - 426
  • [3] Walrus optimizer: A novel nature-inspired metaheuristic algorithm
    Han, Muxuan
    Du, Zunfeng
    Yuen, Kum Fai
    Zhu, Haitao
    Li, Yancang
    Yuan, Qiuyu
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 239
  • [4] Ebola Optimization Search Algorithm: A New Nature-Inspired Metaheuristic Optimization Algorithm
    Oyelade, Olaide Nathaniel
    Ezugwu, Absalom El-Shamir
    Mohamed, Tehnan I. A.
    Abualigah, Laith
    IEEE ACCESS, 2022, 10 : 16150 - 16177
  • [5] Elk herd optimizer: a novel nature-inspired metaheuristic algorithm
    Mohammed Azmi Al-Betar
    Mohammed A. Awadallah
    Malik Shehadeh Braik
    Sharif Makhadmeh
    Iyad Abu Doush
    Artificial Intelligence Review, 57
  • [6] Gazelle optimization algorithm: a novel nature-inspired metaheuristic optimizer
    Agushaka, Jeffrey O.
    Ezugwu, Absalom E.
    Abualigah, Laith
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (05): : 4099 - 4131
  • [7] Gazelle optimization algorithm: a novel nature-inspired metaheuristic optimizer
    Jeffrey O. Agushaka
    Absalom E. Ezugwu
    Laith Abualigah
    Neural Computing and Applications, 2023, 35 : 4099 - 4131
  • [8] Elk herd optimizer: a novel nature-inspired metaheuristic algorithm
    Al-Betar, Mohammed Azmi
    Awadallah, Mohammed A.
    Braik, Malik Shehadeh
    Makhadmeh, Sharif
    Doush, Iyad Abu
    ARTIFICIAL INTELLIGENCE REVIEW, 2024, 57 (03)
  • [9] Beluga whale optimization: A novel nature-inspired metaheuristic algorithm
    Zhong, Changting
    Li, Gang
    Meng, Zeng
    KNOWLEDGE-BASED SYSTEMS, 2022, 251
  • [10] Marine Predators Algorithm: A nature-inspired metaheuristic
    Faramarzi, Afshin
    Heidarinejad, Mohammad
    Mirjalili, Seyedali
    Gandomi, Amir H.
    EXPERT SYSTEMS WITH APPLICATIONS, 2020, 152