Reexamining the acute toxicity of chloropicrin: Comprehensive estimation using in silico methods

被引:0
|
作者
Noga, Maciej [1 ]
Jurowski, Kamil [1 ,2 ]
机构
[1] Inst Med Expertises Lodz, Dept Regulatory & Forens Toxicol, Ul Aleksandrowska 67-93, PL-91205 Lodz, Poland
[2] Rzeszow Univ, Inst Med Studies, Med Coll, Lab Innovat Toxicol Res & Analyzes, Al Mjr W Kopisto 2a, PL-35959 Rzeszow, Poland
关键词
Chloropicrin; Chemical warfare agents; Acute toxicity; Toxicology in silico; DISINFECTION BY-PRODUCTS; QSAR TOOLBOX; MODELS; PREDICTION; EXPOSURE; FUMIGATION; ADMETLAB; PLATFORM;
D O I
10.1016/j.tiv.2025.106033
中图分类号
R99 [毒物学(毒理学)];
学科分类号
100405 ;
摘要
Chloropicrin, historically infamous as a chemical warfare agent during World War I, has recently resurfaced in global conflicts, prompting a reevaluation of its acute toxicological significance. This study addresses the historical knowledge gap surrounding chloropicrin by employing in silico toxicology methods to estimate toxicophores and predict acute toxicity across various exposure routes. Allegations of its use in recent conflicts necessitate a deeper understanding of its toxicological profile, particularly in modern warfare scenarios. Qualitative analysis (STopTox and admetSAR) revealed chloropicrin to be toxic for oral, dermal, and inhalation administration, with the nitro group attached to the carbon atom identified as a significant contributor to its toxic profile. Quantitative in silico estimates, using multiple methods (TEST, ProTox-II, ADMETlab, ACD/Labs Percepta and QSAR Toolbox), indicated t-LD50 values of 48.71 mg/kg bw for oral exposure, 130.16 mg/kg bw for dermal exposure, and an inhalation t-LC50 of 0.022 mg/L. However, method inconsistencies and variability in dose conversion guidance highlight the importance of a cautious approach to interpreting results. Furthermore, the study explores the potential of in silico methods to reduce reliance on animal testing, providing a more efficient and humane alternative for toxicity assessments. The findings contribute to a comprehensive understanding of chloropicrin's acute toxicity, emphasising the relevance of in silico methods in guiding future toxicological studies and informing safety assessments in agricultural and wartime scenarios.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] In silico prediction of acute chemical toxicity of biocides in marine crustaceans using machine learning
    Krishnan, Rama
    Howard, Ian S.
    Comber, Sean
    Jha, Awadhesh N.
    SCIENCE OF THE TOTAL ENVIRONMENT, 2023, 887
  • [22] In silico evaluation of pharmacokinetics and acute toxicity of withanolides in Ashawagandha
    Liu, Yitong
    PHYTOCHEMISTRY LETTERS, 2022, 47 : 130 - 135
  • [23] The comprehensive prediction of carcinogenic potency and tumorigenic dose (TD50) for two problematic N-nitrosamines in food: NMAMPA and NMAMBA using toxicology in silico methods
    Frydrych, Adrian
    Jurowski, Kamil
    CHEMICO-BIOLOGICAL INTERACTIONS, 2024, 389
  • [24] Estimation of acute oral toxicity in rat using local lazy learning
    Jing Lu
    Jianlong Peng
    Jinan Wang
    Qiancheng Shen
    Yi Bi
    Likun Gong
    Mingyue Zheng
    Xiaomin Luo
    Weiliang Zhu
    Hualiang Jiang
    Kaixian Chen
    Journal of Cheminformatics, 6
  • [25] In silico methods for metabolomic and toxicity prediction of zearalenone, α-zearalenone and β-zearalenone
    Agahi, Fojan
    Juan, Cristina
    Font, Guillermina
    Juan-Garcia, Ana
    FOOD AND CHEMICAL TOXICOLOGY, 2020, 146
  • [26] Comparison of in silico tools for evaluating rat oral acute toxicity
    Diaza, R. G.
    Manganelli, S.
    Esposito, A.
    Roncaglioni, A.
    Manganaro, A.
    Benfenati, E.
    SAR AND QSAR IN ENVIRONMENTAL RESEARCH, 2015, 26 (01) : 1 - 27
  • [27] Identifying unknown by-products in drinking water using comprehensive two-dimensional gas chromatography-quadrupole mass spectrometry and in silico toxicity assessment
    Li, Chunmei
    Wang, Donghong
    Li, Na
    Luo, Qian
    Xu, Xiong
    Wang, Zijian
    CHEMOSPHERE, 2016, 163 : 535 - 543
  • [28] Modeling of acute toxicity by using topological and structural parameters
    Shaik, Basheerulla
    Singh, Jyoti
    Ahmad, Izhar
    Singh, Dadan Prasad
    Singh, Satyendra
    Singh, Neelu
    Agrawal, Vijay K.
    JOURNAL OF THE INDIAN CHEMICAL SOCIETY, 2012, 89 (10) : 1375 - 1386
  • [29] Assessing Deep and Shallow Learning Methods for Quantitative Prediction of Acute Chemical Toxicity
    Liu, Ruifeng
    Madore, Michael
    Glover, Kyle P.
    Feasel, Michael G.
    Wallqvist, Anders
    TOXICOLOGICAL SCIENCES, 2018, 164 (02) : 512 - 526
  • [30] Neuronal in vitro models for the estimation of acute systemic toxicity
    Forsby, A.
    Bal-Price, A. K.
    Camins, A.
    Coecke, S.
    Fabre, N.
    Gustafsson, H.
    Honegger, P.
    Kinsner-Ovaskainen, A.
    Pallas, M.
    Rimbau, V.
    Rodriguez-Farre, E.
    Sunol, C.
    Vericat, J. A.
    Zurich, M. G.
    TOXICOLOGY IN VITRO, 2009, 23 (08) : 1564 - 1569