Regular fractal Dirac systems

被引:0
作者
Allahverdiev, Bilender P. [1 ,2 ]
Tuna, Huseyin [2 ,3 ]
Golmankhaneh, Alireza Khalili [4 ,5 ]
机构
[1] Khazar Univ, Dept Math, Baku AZ-1096, Azerbaijan
[2] UNEC Azerbaijan State Univ Econ, Res Ctr Econophys, Baku AZ-1001, Azerbaijan
[3] Burdur Mehmet Akif Ersoy Univ, Dept Math, TR-15030 Burdur, Turkiye
[4] Urmia BranchIslam Azad Univ, Dept Phys, Orumiyeh 63896, W Azerbaijan, Iran
[5] Van Yuzuncu Yil Univ, Fac Sci, Dept Math, TR-65080 Van, Turkiye
关键词
Fractals; fractional differential equations; Dirac operator; REAL LINE; CALCULUS; SUBSETS;
D O I
10.1142/S0219887825500951
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, the classical one-dimensional Dirac equation is considered under the framework of fractal calculus. First, the maximal and minimal operators corresponding to the problem are defined. Then the symmetric operator is obtained, the Green's function corresponding to the problem is constructed, and the eigenfunction expansion is given. Finally, some examples are given.
引用
收藏
页数:13
相关论文
共 17 条
  • [1] Allahverdiev B. P., 2024, Fractal Dirac equations
  • [2] Allahverdiev B. P., 2024, Vladikavkaz Math. J., V26, P27
  • [3] General characteristics of a fractal Sturm-Liouville problem
    Cetinkaya, Fatma Ayca
    Golmankhaneh, Alireza Khalili
    [J]. TURKISH JOURNAL OF MATHEMATICS, 2021, 45 (04) : 1835 - 1846
  • [4] Golmankhaneh A. K., 2024, Fractal green function theory, DOI [10.13140/RG.2.2.33233.54887, DOI 10.13140/RG.2.2.33233.54887]
  • [5] Golmankhaneh A. K., 2022, Fractal Calculus and Its Applications, DOI DOI 10.1142/12988
  • [6] Stochastic differential equations on fractal sets
    Golmankhaneh, Alireza K.
    Tunc, Cemil
    [J]. STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2020, 92 (08) : 1244 - 1260
  • [7] Sumudu transform in fractal calculus
    Golmankhaneh, Alireza K.
    Tunc, Cemil
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2019, 350 : 386 - 401
  • [8] On the Lipschitz condition in the fractal calculus
    Golmankhaneh, Alireza K.
    Tunc, Cemil
    [J]. CHAOS SOLITONS & FRACTALS, 2017, 95 : 140 - 147
  • [9] Fractal Mellin transform and non-local derivatives
    Golmankhaneh, Alireza Khalili
    Welch, Kerri
    Serpa, Cristina
    Jorgensen, Palle E. T.
    [J]. GEORGIAN MATHEMATICAL JOURNAL, 2024, 31 (03) : 423 - 436
  • [10] On discontinuous Dirac operator with eigenparameter dependent boundary and two transmission conditions
    Guldu, Yalcin
    [J]. BOUNDARY VALUE PROBLEMS, 2016,