Global Existence and Stability for a Viscoelastic Wave Equation with Nonlinear Boundary Source Term

被引:0
作者
Mohamed, Mellah [1 ]
Ali, Hakem [1 ]
Gongwei, Liu [2 ]
机构
[1] Univ Djillali Liabes Sidi Bel Abbes, Lab ACEDP, Sidi Bel Abbes 22000, Algeria
[2] Henan Univ Technol, Coll Sci, Zhengzhou 450001, Peoples R China
来源
JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS | 2024年 / 37卷 / 04期
关键词
Viscoelastic equation; nonlinear boundary source; stabilization; GENERAL DECAY; BLOW-UP; NONEXISTENCE; ENERGY;
D O I
10.4208/jpde.v37.n4.6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work considers the initial boundary value problem for a viscoelastic wave equation with a nonlinear boundary source term. Under suitable assumptions, we prove the existence of global weak solutions using the Galerkin approximation. Then, we give a decay rate estimate of the energy by making use of the perturbed energy method.
引用
收藏
页码:467 / 481
页数:15
相关论文
共 25 条
  • [1] General decay rate estimates for viscoelastic dissipative systems
    Cavalcanti, M. M.
    Cavalcanti, V. N. Domingos
    Martinez, P.
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (01) : 177 - 193
  • [2] Cavalcanti M.M., 2001, Diff. Integ. Eqs, V14, P85
  • [3] Frictional versus viscoelastic damping in a semilinear wave equation
    Cavalcanti, MM
    Oquendo, HP
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2003, 42 (04) : 1310 - 1324
  • [4] Existence and uniform decay for a non-linear viscoelastic equation with strong damping
    Cavalcanti, MM
    Cavalcanti, VND
    Ferreira, J
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2001, 24 (14) : 1043 - 1053
  • [5] GLOBAL EXISTENCE AND BLOW-UP PHENOMENON FOR A QUASILINEAR VISCOELASTIC EQUATION WITH STRONG DAMPING AND SOURCE TERMS
    Di, Huafei
    Song, Zefang
    [J]. OPUSCULA MATHEMATICA, 2022, 42 (02) : 119 - 155
  • [6] Di HF, 2017, EUR J PURE APPL MATH, V10, P668
  • [7] Global existence and nonexistence of solutions for a viscoelastic wave equation with nonlinear boundary source term
    Di, Huafei
    Shang, Yadong
    Peng, Xiaoming
    [J]. MATHEMATISCHE NACHRICHTEN, 2016, 289 (11-12) : 1408 - 1432
  • [8] Fabrizio M., 1992, MATH PROBLEMS LINEAR
  • [9] General decay of energy for a viscoelastic equation with nonlinear damping
    Han, Xiaosen
    Wang, Mingxin
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2010, 347 (05): : 806 - 817
  • [10] General decay of energy for a viscoelastic equation with nonlinear damping
    Han, Xiaosen
    Wang, Mingxin
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2009, 32 (03) : 346 - 358