A 3D residual network-based approach for accurate lung nodule segmentation in CT images

被引:0
作者
Vincy, V. G. Anisha Gnana [1 ]
Byeon, Haewon [2 ]
Mahajan, Divya [3 ]
Tonk, Anu [4 ]
Sunil, J. [5 ]
机构
[1] Tagore Engn Coll, Dept Artificial Intelligence & Data Sci, Chennai, Tamil Nadu, India
[2] Korea Univ Technol & Educ, Dept Future Technol, Cheonan 31253, South Korea
[3] Univ Delhi, Satyawati Coll, Dept Math, Delhi, India
[4] Northcap Univ, Dept Multidisciplinary Engn, Gurugram, India
[5] Annai Vailankanni Coll Engn, Kanyakumari, India
关键词
Computed tomography; Lung cancer segmentation; Residual network; U-net; Melody search optimization; IMMUNOTHERAPY; CANCER;
D O I
10.1016/j.jrras.2025.101407
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Finding cancerous tumors before they spread is very beneficial and might potentially save patients' lives. The availability of reliable and automated lung cancer detection devices is crucial for both cancer diagnosis and radiation treatment planning. Because of the abundance of data, the tumor's size fluctuation, and its location, a CT scan of a lung tumor will show poor contrast. Using deep learning for medical image processing to segment CT images for cancer detection is no easy feat. The malignant lung region shall be effectively separated from the healthy chest area by using an optimization approach with the 3D residual network ResNet50. A dense-feature extraction module takes all of the encoded feature maps and uses them to extract multiscale features. A U-Net model decoder solves the vanishing gradient problem, and a residual network encodes the input lung CT slices into feature maps. Several encoders work in tandem with the suggested design. No matter how severe a lung anomaly is, we have trained a model to extract dense characteristics from it. Even under difficult conditions, the experimental results show that the proposed technique swiftly and correctly produces explicit lung areas without post-processing. The improved segmentation result may also aid in reducing the risk, according to the available data. Evaluation results on the LUNA16 public dataset showed that the provided technique successfully segmented images of lung nodules using accuracy, recall rate, dice coefficient index, and Hausdroff.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Supervised recursive segmentation of volumetric CT images for 3D reconstruction of lung and vessel tree
    Li, Xuanping
    Wang, Xue
    Dai, Yixiang
    Zhang, Pengbo
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2015, 122 (03) : 316 - 329
  • [22] Efficient multiscale fully convolutional UNet model for segmentation of 3D lung nodule from CT image
    Agnes, Sundaresan A.
    Anitha, Jeevanayagam
    JOURNAL OF MEDICAL IMAGING, 2022, 9 (05)
  • [23] Lung nodule type classification in CT images using UNet based segmentation and ANFIS based classification
    Manickavasagam, R.
    Selvan, S.
    Selvan, Mary
    CONTROL ENGINEERING AND APPLIED INFORMATICS, 2023, 25 (04): : 31 - 39
  • [24] LungSeek: 3D Selective Kernel residual network for pulmonary nodule diagnosis
    Haowan Zhang
    Hong Zhang
    The Visual Computer, 2023, 39 : 679 - 692
  • [25] 3D Lightweight Network for Simultaneous Registration and Segmentation of Organs-at-Risk in CT Images of Head and Neck Cancer
    Huang, Bin
    Ye, Yufeng
    Xu, Ziyue
    Cai, Zongyou
    He, Yan
    Zhong, Zhangnan
    Liu, Lingxiang
    Chen, Xin
    Chen, Hanwei
    Huang, Bingsheng
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2022, 41 (04) : 951 - 964
  • [26] Lung Nodule Detection With Deep Learning in 3D Thoracic MR Images
    Li, Yanfeng
    Zhang, Linlin
    Chen, Houjin
    Yang, Na
    IEEE ACCESS, 2019, 7 (37822-37832) : 37822 - 37832
  • [27] Accurate segmentation for different types of lung nodules on CT images using improved U-Net convolutional network
    Zhang, Xiaofang
    Liu, Xiaomin
    Zhang, Bin
    Dong, Jie
    Zhang, Bin
    Zhao, Shujun
    Li, Suxiao
    MEDICINE, 2021, 100 (40) : E27491
  • [28] Improving lung nodule segmentation in thoracic CT scans through the ensemble of 3D U-Net models
    Rikhari, Himanshu
    Baidya Kayal, Esha
    Ganguly, Shuvadeep
    Sasi, Archana
    Sharma, Swetambri
    Antony, Ajith
    Rangarajan, Krithika
    Bakhshi, Sameer
    Kandasamy, Devasenathipathy
    Mehndiratta, Amit
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2024, 19 (10) : 2089 - 2099
  • [29] Coarse-to-Fine Lung Nodule Segmentation in CT Images With Image Enhancement and Dual-Branch Network
    Wu, Zhitong
    Zhou, Qianjun
    Wang, Feng
    IEEE ACCESS, 2021, 9 (09): : 7255 - 7262
  • [30] A combined learning algorithm for prostate segmentation on 3D CT images
    Ma, Ling
    Guo, Rongrong
    Zhang, Guoyi
    Schuster, David M.
    Fei, Baowei
    MEDICAL PHYSICS, 2017, 44 (11) : 5768 - 5781